Evaluate
4x-14ax
Expand
4x-14ax
Graph
Share
Copied to clipboard
a\left(x^{2}-6x+9\right)+\left(2-a\right)\left(x-3\right)-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
ax^{2}-6ax+9a+\left(2-a\right)\left(x-3\right)-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Use the distributive property to multiply a by x^{2}-6x+9.
ax^{2}-6ax+9a+2x-6-ax+3a-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Use the distributive property to multiply 2-a by x-3.
ax^{2}-7ax+9a+2x-6+3a-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Combine -6ax and -ax to get -7ax.
ax^{2}-7ax+12a+2x-6-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Combine 9a and 3a to get 12a.
ax^{2}-7ax+12a+2x-6-a\left(x^{2}+6x+9\right)+\left(2-a\right)\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
ax^{2}-7ax+12a+2x-6-\left(ax^{2}+6ax+9a\right)+\left(2-a\right)\left(x+3\right)
Use the distributive property to multiply a by x^{2}+6x+9.
ax^{2}-7ax+12a+2x-6-ax^{2}-6ax-9a+\left(2-a\right)\left(x+3\right)
To find the opposite of ax^{2}+6ax+9a, find the opposite of each term.
-7ax+12a+2x-6-6ax-9a+\left(2-a\right)\left(x+3\right)
Combine ax^{2} and -ax^{2} to get 0.
-13ax+12a+2x-6-9a+\left(2-a\right)\left(x+3\right)
Combine -7ax and -6ax to get -13ax.
-13ax+3a+2x-6+\left(2-a\right)\left(x+3\right)
Combine 12a and -9a to get 3a.
-13ax+3a+2x-6+2x+6-ax-3a
Use the distributive property to multiply 2-a by x+3.
-13ax+3a+4x-6+6-ax-3a
Combine 2x and 2x to get 4x.
-13ax+3a+4x-ax-3a
Add -6 and 6 to get 0.
-13ax+4x-ax
Combine 3a and -3a to get 0.
-14ax+4x
Combine -13ax and -ax to get -14ax.
a\left(x^{2}-6x+9\right)+\left(2-a\right)\left(x-3\right)-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
ax^{2}-6ax+9a+\left(2-a\right)\left(x-3\right)-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Use the distributive property to multiply a by x^{2}-6x+9.
ax^{2}-6ax+9a+2x-6-ax+3a-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Use the distributive property to multiply 2-a by x-3.
ax^{2}-7ax+9a+2x-6+3a-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Combine -6ax and -ax to get -7ax.
ax^{2}-7ax+12a+2x-6-a\left(x+3\right)^{2}+\left(2-a\right)\left(x+3\right)
Combine 9a and 3a to get 12a.
ax^{2}-7ax+12a+2x-6-a\left(x^{2}+6x+9\right)+\left(2-a\right)\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
ax^{2}-7ax+12a+2x-6-\left(ax^{2}+6ax+9a\right)+\left(2-a\right)\left(x+3\right)
Use the distributive property to multiply a by x^{2}+6x+9.
ax^{2}-7ax+12a+2x-6-ax^{2}-6ax-9a+\left(2-a\right)\left(x+3\right)
To find the opposite of ax^{2}+6ax+9a, find the opposite of each term.
-7ax+12a+2x-6-6ax-9a+\left(2-a\right)\left(x+3\right)
Combine ax^{2} and -ax^{2} to get 0.
-13ax+12a+2x-6-9a+\left(2-a\right)\left(x+3\right)
Combine -7ax and -6ax to get -13ax.
-13ax+3a+2x-6+\left(2-a\right)\left(x+3\right)
Combine 12a and -9a to get 3a.
-13ax+3a+2x-6+2x+6-ax-3a
Use the distributive property to multiply 2-a by x+3.
-13ax+3a+4x-6+6-ax-3a
Combine 2x and 2x to get 4x.
-13ax+3a+4x-ax-3a
Add -6 and 6 to get 0.
-13ax+4x-ax
Combine 3a and -3a to get 0.
-14ax+4x
Combine -13ax and -ax to get -14ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}