Solve for a
a=-\frac{c}{20}-\frac{3b}{10}+10
Solve for b
b=-\frac{c}{6}-\frac{10a}{3}+\frac{100}{3}
Share
Copied to clipboard
a\times 10+c\times 0.5=100-b\times 3
Subtract b\times 3 from both sides.
a\times 10=100-b\times 3-c\times 0.5
Subtract c\times 0.5 from both sides.
a\times 10=100-3b-c\times 0.5
Multiply -1 and 3 to get -3.
a\times 10=100-3b-0.5c
Multiply -1 and 0.5 to get -0.5.
10a=-\frac{c}{2}-3b+100
The equation is in standard form.
\frac{10a}{10}=\frac{-\frac{c}{2}-3b+100}{10}
Divide both sides by 10.
a=\frac{-\frac{c}{2}-3b+100}{10}
Dividing by 10 undoes the multiplication by 10.
a=-\frac{c}{20}-\frac{3b}{10}+10
Divide 100-3b-\frac{c}{2} by 10.
b\times 3+c\times 0.5=100-a\times 10
Subtract a\times 10 from both sides.
b\times 3=100-a\times 10-c\times 0.5
Subtract c\times 0.5 from both sides.
b\times 3=100-10a-c\times 0.5
Multiply -1 and 10 to get -10.
b\times 3=100-10a-0.5c
Multiply -1 and 0.5 to get -0.5.
3b=-\frac{c}{2}-10a+100
The equation is in standard form.
\frac{3b}{3}=\frac{-\frac{c}{2}-10a+100}{3}
Divide both sides by 3.
b=\frac{-\frac{c}{2}-10a+100}{3}
Dividing by 3 undoes the multiplication by 3.
b=-\frac{c}{6}-\frac{10a}{3}+\frac{100}{3}
Divide 100-10a-\frac{c}{2} by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}