Solve for a
\left\{\begin{matrix}a=-\frac{b\left(bx-c\right)}{x\left(-x+\sqrt{b}\right)}\text{, }&x\neq 0\text{ and }\left(x<0\text{ or }b\neq x^{2}\right)\text{ and }b\geq 0\\a\in \mathrm{R}\text{, }&\left(c=0\text{ and }x=0\text{ and }b>0\right)\text{ or }\left(b=c^{\frac{2}{3}}\text{ and }x=\sqrt[3]{c}\text{ and }c>0\right)\text{ or }\left(x=0\text{ and }b=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
a\sqrt{b}x+b^{2}x-ax^{2}-bc=0
Use the distributive property to multiply b^{2}-ax by x.
a\sqrt{b}x-ax^{2}-bc=-b^{2}x
Subtract b^{2}x from both sides. Anything subtracted from zero gives its negation.
a\sqrt{b}x-ax^{2}=-b^{2}x+bc
Add bc to both sides.
\sqrt{b}ax-ax^{2}=-xb^{2}+bc
Reorder the terms.
\left(\sqrt{b}x-x^{2}\right)a=-xb^{2}+bc
Combine all terms containing a.
\left(\sqrt{b}x-x^{2}\right)a=bc-xb^{2}
The equation is in standard form.
\frac{\left(\sqrt{b}x-x^{2}\right)a}{\sqrt{b}x-x^{2}}=\frac{b\left(c-bx\right)}{\sqrt{b}x-x^{2}}
Divide both sides by \sqrt{b}x-x^{2}.
a=\frac{b\left(c-bx\right)}{\sqrt{b}x-x^{2}}
Dividing by \sqrt{b}x-x^{2} undoes the multiplication by \sqrt{b}x-x^{2}.
a=\frac{b\left(c-bx\right)}{x\left(-x+\sqrt{b}\right)}
Divide b\left(-xb+c\right) by \sqrt{b}x-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}