Skip to main content
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

a\sqrt{b}x+b^{2}x-ax^{2}-bc=0
Use the distributive property to multiply b^{2}-ax by x.
a\sqrt{b}x-ax^{2}-bc=-b^{2}x
Subtract b^{2}x from both sides. Anything subtracted from zero gives its negation.
a\sqrt{b}x-ax^{2}=-b^{2}x+bc
Add bc to both sides.
\sqrt{b}ax-ax^{2}=-xb^{2}+bc
Reorder the terms.
\left(\sqrt{b}x-x^{2}\right)a=-xb^{2}+bc
Combine all terms containing a.
\left(\sqrt{b}x-x^{2}\right)a=bc-xb^{2}
The equation is in standard form.
\frac{\left(\sqrt{b}x-x^{2}\right)a}{\sqrt{b}x-x^{2}}=\frac{b\left(c-bx\right)}{\sqrt{b}x-x^{2}}
Divide both sides by \sqrt{b}x-x^{2}.
a=\frac{b\left(c-bx\right)}{\sqrt{b}x-x^{2}}
Dividing by \sqrt{b}x-x^{2} undoes the multiplication by \sqrt{b}x-x^{2}.
a=\frac{b\left(c-bx\right)}{x\left(-x+\sqrt{b}\right)}
Divide b\left(-xb+c\right) by \sqrt{b}x-x^{2}.