Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(a\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Square both sides of the equation.
a^{2}\left(\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Expand \left(a\sqrt{\frac{1}{a}}\right)^{2}.
a^{2}\times \frac{1}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Calculate \sqrt{\frac{1}{a}} to the power of 2 and get \frac{1}{a}.
\frac{a^{2}}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Express a^{2}\times \frac{1}{a} as a single fraction.
a=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Cancel out a in both numerator and denominator.
a=a^{2}\times \frac{1}{2}
Calculate \sqrt{a^{2}\times \frac{1}{2}} to the power of 2 and get a^{2}\times \frac{1}{2}.
a-a^{2}\times \frac{1}{2}=0
Subtract a^{2}\times \frac{1}{2} from both sides.
a-\frac{1}{2}a^{2}=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
a\left(1-\frac{1}{2}a\right)=0
Factor out a.
a=0 a=2
To find equation solutions, solve a=0 and 1-\frac{a}{2}=0.
0\sqrt{\text{Indeterminate}}=\sqrt{0^{2}\times \frac{1}{2}}
Substitute 0 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}. The expression is undefined.
2\sqrt{\frac{1}{2}}=\sqrt{2^{2}\times \frac{1}{2}}
Substitute 2 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value a=2 satisfies the equation.
a=2
Equation \sqrt{\frac{1}{a}}a=\sqrt{\frac{a^{2}}{2}} has a unique solution.
\left(a\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Square both sides of the equation.
a^{2}\left(\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Expand \left(a\sqrt{\frac{1}{a}}\right)^{2}.
a^{2}\times \frac{1}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Calculate \sqrt{\frac{1}{a}} to the power of 2 and get \frac{1}{a}.
\frac{a^{2}}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Express a^{2}\times \frac{1}{a} as a single fraction.
a=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Cancel out a in both numerator and denominator.
a=a^{2}\times \frac{1}{2}
Calculate \sqrt{a^{2}\times \frac{1}{2}} to the power of 2 and get a^{2}\times \frac{1}{2}.
a-a^{2}\times \frac{1}{2}=0
Subtract a^{2}\times \frac{1}{2} from both sides.
a-\frac{1}{2}a^{2}=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
a\left(1-\frac{1}{2}a\right)=0
Factor out a.
a=0 a=2
To find equation solutions, solve a=0 and 1-\frac{a}{2}=0.
0\sqrt{\text{Indeterminate}}=\sqrt{0^{2}\times \frac{1}{2}}
Substitute 0 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}. The expression is undefined.
2\sqrt{\frac{1}{2}}=\sqrt{2^{2}\times \frac{1}{2}}
Substitute 2 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value a=2 satisfies the equation.
a=2
Equation \sqrt{\frac{1}{a}}a=\sqrt{\frac{a^{2}}{2}} has a unique solution.