Solve for a (complex solution)
a=2
Solve for a
a=2
a=0
Quiz
Algebra
5 problems similar to:
a \sqrt { \frac { 1 } { a } } = \sqrt { a ^ { 2 } \frac { 1 } { 2 } }
Share
Copied to clipboard
\left(a\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Square both sides of the equation.
a^{2}\left(\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Expand \left(a\sqrt{\frac{1}{a}}\right)^{2}.
a^{2}\times \frac{1}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Calculate \sqrt{\frac{1}{a}} to the power of 2 and get \frac{1}{a}.
\frac{a^{2}}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Express a^{2}\times \frac{1}{a} as a single fraction.
a=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Cancel out a in both numerator and denominator.
a=a^{2}\times \frac{1}{2}
Calculate \sqrt{a^{2}\times \frac{1}{2}} to the power of 2 and get a^{2}\times \frac{1}{2}.
a-a^{2}\times \frac{1}{2}=0
Subtract a^{2}\times \frac{1}{2} from both sides.
a-\frac{1}{2}a^{2}=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
a\left(1-\frac{1}{2}a\right)=0
Factor out a.
a=0 a=2
To find equation solutions, solve a=0 and 1-\frac{a}{2}=0.
0\sqrt{\text{Indeterminate}}=\sqrt{0^{2}\times \frac{1}{2}}
Substitute 0 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}. The expression is undefined.
2\sqrt{\frac{1}{2}}=\sqrt{2^{2}\times \frac{1}{2}}
Substitute 2 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value a=2 satisfies the equation.
a=2
Equation \sqrt{\frac{1}{a}}a=\sqrt{\frac{a^{2}}{2}} has a unique solution.
\left(a\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Square both sides of the equation.
a^{2}\left(\sqrt{\frac{1}{a}}\right)^{2}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Expand \left(a\sqrt{\frac{1}{a}}\right)^{2}.
a^{2}\times \frac{1}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Calculate \sqrt{\frac{1}{a}} to the power of 2 and get \frac{1}{a}.
\frac{a^{2}}{a}=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Express a^{2}\times \frac{1}{a} as a single fraction.
a=\left(\sqrt{a^{2}\times \frac{1}{2}}\right)^{2}
Cancel out a in both numerator and denominator.
a=a^{2}\times \frac{1}{2}
Calculate \sqrt{a^{2}\times \frac{1}{2}} to the power of 2 and get a^{2}\times \frac{1}{2}.
a-a^{2}\times \frac{1}{2}=0
Subtract a^{2}\times \frac{1}{2} from both sides.
a-\frac{1}{2}a^{2}=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
a\left(1-\frac{1}{2}a\right)=0
Factor out a.
a=0 a=2
To find equation solutions, solve a=0 and 1-\frac{a}{2}=0.
0\sqrt{\text{Indeterminate}}=\sqrt{0^{2}\times \frac{1}{2}}
Substitute 0 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}. The expression is undefined.
2\sqrt{\frac{1}{2}}=\sqrt{2^{2}\times \frac{1}{2}}
Substitute 2 for a in the equation a\sqrt{\frac{1}{a}}=\sqrt{a^{2}\times \frac{1}{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value a=2 satisfies the equation.
a=2
Equation \sqrt{\frac{1}{a}}a=\sqrt{\frac{a^{2}}{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}