Solve for a
a=-\frac{45}{2}+\frac{270}{x}
x\neq 0
Solve for x
x=\frac{540}{2a+45}
a\neq -\frac{45}{2}
Graph
Share
Copied to clipboard
6a\times \frac{1}{3}x+3\left(7\times 2+1\right)x=540
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2ax+3\left(7\times 2+1\right)x=540
Multiply 6 and \frac{1}{3} to get 2.
2ax+3\left(14+1\right)x=540
Multiply 7 and 2 to get 14.
2ax+3\times 15x=540
Add 14 and 1 to get 15.
2ax+45x=540
Multiply 3 and 15 to get 45.
2ax=540-45x
Subtract 45x from both sides.
2xa=540-45x
The equation is in standard form.
\frac{2xa}{2x}=\frac{540-45x}{2x}
Divide both sides by 2x.
a=\frac{540-45x}{2x}
Dividing by 2x undoes the multiplication by 2x.
a=-\frac{45}{2}+\frac{270}{x}
Divide 540-45x by 2x.
6a\times \frac{1}{3}x+3\left(7\times 2+1\right)x=540
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2ax+3\left(7\times 2+1\right)x=540
Multiply 6 and \frac{1}{3} to get 2.
2ax+3\left(14+1\right)x=540
Multiply 7 and 2 to get 14.
2ax+3\times 15x=540
Add 14 and 1 to get 15.
2ax+45x=540
Multiply 3 and 15 to get 45.
\left(2a+45\right)x=540
Combine all terms containing x.
\frac{\left(2a+45\right)x}{2a+45}=\frac{540}{2a+45}
Divide both sides by 2a+45.
x=\frac{540}{2a+45}
Dividing by 2a+45 undoes the multiplication by 2a+45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}