a \cdot 235 = [ a \cdot 235 + ( 1 - a ) 238 ] \times 2 \cdot 34 \%
Solve for a
a=\frac{2023}{2963}\approx 0.682753966
Share
Copied to clipboard
a\times 235=\left(a\times 235+238-238a\right)\times 2\times \frac{34}{100}
Use the distributive property to multiply 1-a by 238.
a\times 235=\left(-3a+238\right)\times 2\times \frac{34}{100}
Combine a\times 235 and -238a to get -3a.
a\times 235=\left(-3a+238\right)\times 2\times \frac{17}{50}
Reduce the fraction \frac{34}{100} to lowest terms by extracting and canceling out 2.
a\times 235=\left(-3a+238\right)\times \frac{2\times 17}{50}
Express 2\times \frac{17}{50} as a single fraction.
a\times 235=\left(-3a+238\right)\times \frac{34}{50}
Multiply 2 and 17 to get 34.
a\times 235=\left(-3a+238\right)\times \frac{17}{25}
Reduce the fraction \frac{34}{50} to lowest terms by extracting and canceling out 2.
a\times 235=-3a\times \frac{17}{25}+238\times \frac{17}{25}
Use the distributive property to multiply -3a+238 by \frac{17}{25}.
a\times 235=\frac{-3\times 17}{25}a+238\times \frac{17}{25}
Express -3\times \frac{17}{25} as a single fraction.
a\times 235=\frac{-51}{25}a+238\times \frac{17}{25}
Multiply -3 and 17 to get -51.
a\times 235=-\frac{51}{25}a+238\times \frac{17}{25}
Fraction \frac{-51}{25} can be rewritten as -\frac{51}{25} by extracting the negative sign.
a\times 235=-\frac{51}{25}a+\frac{238\times 17}{25}
Express 238\times \frac{17}{25} as a single fraction.
a\times 235=-\frac{51}{25}a+\frac{4046}{25}
Multiply 238 and 17 to get 4046.
a\times 235+\frac{51}{25}a=\frac{4046}{25}
Add \frac{51}{25}a to both sides.
\frac{5926}{25}a=\frac{4046}{25}
Combine a\times 235 and \frac{51}{25}a to get \frac{5926}{25}a.
a=\frac{4046}{25}\times \frac{25}{5926}
Multiply both sides by \frac{25}{5926}, the reciprocal of \frac{5926}{25}.
a=\frac{4046\times 25}{25\times 5926}
Multiply \frac{4046}{25} times \frac{25}{5926} by multiplying numerator times numerator and denominator times denominator.
a=\frac{4046}{5926}
Cancel out 25 in both numerator and denominator.
a=\frac{2023}{2963}
Reduce the fraction \frac{4046}{5926} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}