Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a\left(\frac{x+1}{x-2}-\frac{x-1}{x+2}\right)\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2.
a\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x-1}{x+2} times \frac{x-2}{x-2}.
a\times \frac{\left(x+1\right)\left(x+2\right)-\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Since \frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
a\times \frac{x^{2}+2x+x+2-x^{2}+2x+x-2}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Do the multiplications in \left(x+1\right)\left(x+2\right)-\left(x-1\right)\left(x-2\right).
a\times \frac{6x}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Combine like terms in x^{2}+2x+x+2-x^{2}+2x+x-2.
\frac{a\times 6x}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Express a\times \frac{6x}{\left(x-2\right)\left(x+2\right)} as a single fraction.
\frac{a\times 6x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Express \frac{a\times 6x}{\left(x-2\right)\left(x+2\right)}\left(x-2\right) as a single fraction.
\frac{6ax}{x+2}\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Cancel out x-2 in both numerator and denominator.
\frac{6ax\left(x+2\right)}{x+2}=6x\left(x-2\right)\left(x+2\right)
Express \frac{6ax}{x+2}\left(x+2\right) as a single fraction.
6ax=6x\left(x-2\right)\left(x+2\right)
Cancel out x+2 in both numerator and denominator.
6ax=\left(6x^{2}-12x\right)\left(x+2\right)
Use the distributive property to multiply 6x by x-2.
6ax=6x^{3}-24x
Use the distributive property to multiply 6x^{2}-12x by x+2 and combine like terms.
6xa=6x^{3}-24x
The equation is in standard form.
\frac{6xa}{6x}=\frac{6x^{3}-24x}{6x}
Divide both sides by 6x.
a=\frac{6x^{3}-24x}{6x}
Dividing by 6x undoes the multiplication by 6x.
a=x^{2}-4
Divide 6x^{3}-24x by 6x.
a\left(\frac{x+1}{x-2}-\frac{x-1}{x+2}\right)\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2.
a\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x-1}{x+2} times \frac{x-2}{x-2}.
a\times \frac{\left(x+1\right)\left(x+2\right)-\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Since \frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
a\times \frac{x^{2}+2x+x+2-x^{2}+2x+x-2}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Do the multiplications in \left(x+1\right)\left(x+2\right)-\left(x-1\right)\left(x-2\right).
a\times \frac{6x}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Combine like terms in x^{2}+2x+x+2-x^{2}+2x+x-2.
\frac{a\times 6x}{\left(x-2\right)\left(x+2\right)}\left(x-2\right)\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Express a\times \frac{6x}{\left(x-2\right)\left(x+2\right)} as a single fraction.
\frac{a\times 6x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Express \frac{a\times 6x}{\left(x-2\right)\left(x+2\right)}\left(x-2\right) as a single fraction.
\frac{6ax}{x+2}\left(x+2\right)=6x\left(x-2\right)\left(x+2\right)
Cancel out x-2 in both numerator and denominator.
\frac{6ax\left(x+2\right)}{x+2}=6x\left(x-2\right)\left(x+2\right)
Express \frac{6ax}{x+2}\left(x+2\right) as a single fraction.
6ax=6x\left(x-2\right)\left(x+2\right)
Cancel out x+2 in both numerator and denominator.
6ax=\left(6x^{2}-12x\right)\left(x+2\right)
Use the distributive property to multiply 6x by x-2.
6ax=6x^{3}-24x
Use the distributive property to multiply 6x^{2}-12x by x+2 and combine like terms.
6xa=6x^{3}-24x
The equation is in standard form.
\frac{6xa}{6x}=\frac{6x^{3}-24x}{6x}
Divide both sides by 6x.
a=\frac{6x^{3}-24x}{6x}
Dividing by 6x undoes the multiplication by 6x.
a=x^{2}-4
Divide 6x^{3}-24x by 6x.