Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{1}{a^{x}}\text{, }&x=0\text{ or }a\neq 0\\b\in \mathrm{C}\text{, }&a=0\text{ and }x\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{1}{a^{x}}\text{, }&a>0\text{ or }\left(Denominator(x)\text{bmod}2=1\text{ and }a<0\right)\\b\in \mathrm{R}\text{, }&a=0\text{ and }x>0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=e^{-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}+\frac{arg(\frac{1}{b})Im(x)+iarg(\frac{1}{b})Re(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|b|\right)^{\frac{-Re(x)+iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\text{, }n_{1}\in \mathrm{Z}\text{, }&b\neq 0\\a=0\text{, }&x\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=0\text{, }&x>0\\a=\left(\frac{1}{b}\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}\neq 0\text{ and }b<0\right)\text{ or }\left(\left(\frac{1}{b}\right)^{\frac{1}{x}}>0\text{ and }x\neq 0\text{ and }b>0\right)\text{ or }\left(\left(\frac{1}{b}\right)^{\frac{1}{x}}<0\text{ and }x\neq 0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }b>0\right)\\a=-\left(\frac{1}{b}\right)^{\frac{1}{x}}\text{, }&\left(b<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(b>0\text{ and }x\neq 0\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\text{ or }\left(b>0\text{ and }x\neq 0\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\\a\neq 0\text{, }&b=1\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ba^{2x}=a^{x}
Swap sides so that all variable terms are on the left hand side.
a^{2x}b=a^{x}
The equation is in standard form.
\frac{a^{2x}b}{a^{2x}}=\frac{a^{x}}{a^{2x}}
Divide both sides by a^{2x}.
b=\frac{a^{x}}{a^{2x}}
Dividing by a^{2x} undoes the multiplication by a^{2x}.
b=\frac{1}{a^{x}}
Divide a^{x} by a^{2x}.
ba^{2x}=a^{x}
Swap sides so that all variable terms are on the left hand side.
a^{2x}b=a^{x}
The equation is in standard form.
\frac{a^{2x}b}{a^{2x}}=\frac{a^{x}}{a^{2x}}
Divide both sides by a^{2x}.
b=\frac{a^{x}}{a^{2x}}
Dividing by a^{2x} undoes the multiplication by a^{2x}.
b=\frac{1}{a^{x}}
Divide a^{x} by a^{2x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}