Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{4}-1296\right)\left(a^{4}+1296\right)
Rewrite a^{8}-1679616 as \left(a^{4}\right)^{2}-1296^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}-36\right)\left(a^{2}+36\right)
Consider a^{4}-1296. Rewrite a^{4}-1296 as \left(a^{2}\right)^{2}-36^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-6\right)\left(a+6\right)
Consider a^{2}-36. Rewrite a^{2}-36 as a^{2}-6^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-6\right)\left(a+6\right)\left(a^{2}+36\right)\left(a^{4}+1296\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: a^{2}+36,a^{4}+1296.
a^{8}-1679616
Calculate 6 to the power of 8 and get 1679616.