Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)
Rewrite a^{6}-b^{6} as \left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a^{2}+ab+b^{2}\right)
Consider a^{3}-b^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a+b\right)\left(a^{2}-ab+b^{2}\right)
Consider a^{3}+b^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a-b\right)\left(a+b\right)\left(a^{2}-ab+b^{2}\right)\left(a^{2}+ab+b^{2}\right)
Rewrite the complete factored expression.