Factor
\left(a-6\right)\left(a+6\right)\left(a^{2}-6a+36\right)\left(a^{2}+6a+36\right)
Evaluate
\left(a^{2}-36\right)\left(\left(a^{2}+36\right)^{2}-36a^{2}\right)
Share
Copied to clipboard
\left(a^{3}-216\right)\left(a^{3}+216\right)
Rewrite a^{6}-46656 as \left(a^{3}\right)^{2}-216^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-6\right)\left(a^{2}+6a+36\right)
Consider a^{3}-216. Rewrite a^{3}-216 as a^{3}-6^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a+6\right)\left(a^{2}-6a+36\right)
Consider a^{3}+216. Rewrite a^{3}+216 as a^{3}+6^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a-6\right)\left(a+6\right)\left(a^{2}-6a+36\right)\left(a^{2}+6a+36\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: a^{2}-6a+36,a^{2}+6a+36.
a^{6}-46656
Calculate 6 to the power of 6 and get 46656.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}