Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{2}\left(a^{2}-b^{2}\right)-9\left(a^{2}-b^{2}\right)
Do the grouping a^{4}-a^{2}b^{2}-9a^{2}+9b^{2}=\left(a^{4}-a^{2}b^{2}\right)+\left(-9a^{2}+9b^{2}\right), and factor out a^{2} in the first and -9 in the second group.
\left(a^{2}-b^{2}\right)\left(a^{2}-9\right)
Factor out common term a^{2}-b^{2} by using distributive property.
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-3\right)\left(a+3\right)
Consider a^{2}-9. Rewrite a^{2}-9 as a^{2}-3^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-3\right)\left(a+3\right)\left(a-b\right)\left(a+b\right)
Rewrite the complete factored expression.