Factor
\left(a+b\right)^{2}\left(a^{2}-4ab-b^{2}\right)
Evaluate
\left(a+b\right)^{2}\left(a^{2}-4ab-b^{2}\right)
Share
Copied to clipboard
a^{4}-2ba^{3}-8b^{2}a^{2}-6b^{3}a-b^{4}
Consider a^{4}-2a^{3}b-8a^{2}b^{2}-6ab^{3}-b^{4} as a polynomial over variable a.
\left(a+b\right)\left(a^{3}-5ab^{2}-b^{3}-3ba^{2}\right)
Find one factor of the form a^{k}+m, where a^{k} divides the monomial with the highest power a^{4} and m divides the constant factor -b^{4}. One such factor is a+b. Factor the polynomial by dividing it by this factor.
a^{3}-3ba^{2}-5b^{2}a-b^{3}
Consider a^{3}-5ab^{2}-b^{3}-3ba^{2}. Consider a^{3}-5ab^{2}-b^{3}-3ba^{2} as a polynomial over variable a.
\left(a+b\right)\left(a^{2}-4ab-b^{2}\right)
Find one factor of the form a^{n}+p, where a^{n} divides the monomial with the highest power a^{3} and p divides the constant factor -b^{3}. One such factor is a+b. Factor the polynomial by dividing it by this factor.
\left(a^{2}-4ab-b^{2}\right)\left(a+b\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}