Solve for a
a=\frac{1-\sqrt{5}}{2}\approx -0.618033989
a=\frac{\sqrt{5}-1}{2}\approx 0.618033989
a = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
a=\frac{-\sqrt{5}-1}{2}\approx -1.618033989
Share
Copied to clipboard
a^{4}-2a^{2}-a^{2}=-1
Subtract a^{2} from both sides.
a^{4}-3a^{2}=-1
Combine -2a^{2} and -a^{2} to get -3a^{2}.
a^{4}-3a^{2}+1=0
Add 1 to both sides.
t^{2}-3t+1=0
Substitute t for a^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula.
t=\frac{3±\sqrt{5}}{2}
Do the calculations.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
Solve the equation t=\frac{3±\sqrt{5}}{2} when ± is plus and when ± is minus.
a=\frac{\sqrt{5}+1}{2} a=-\frac{\sqrt{5}+1}{2} a=-\frac{1-\sqrt{5}}{2} a=\frac{1-\sqrt{5}}{2}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}