Skip to main content
Differentiate w.r.t. a
Tick mark Image
Evaluate
Tick mark Image

Share

\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}a^{-6}}{a^{\frac{1}{2}}})
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{-2}}{a^{\frac{1}{2}}})
To multiply powers of the same base, add their exponents. Add 4 and -6 to get -2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{\frac{5}{2}}})
Rewrite a^{\frac{1}{2}} as a^{-2}a^{\frac{5}{2}}. Cancel out a^{-2} in both numerator and denominator.
-\left(a^{\frac{5}{2}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{\frac{5}{2}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{\frac{5}{2}}\right)^{-2}\times \frac{5}{2}a^{\frac{5}{2}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{5}{2}a^{\frac{3}{2}}\left(a^{\frac{5}{2}}\right)^{-2}
Simplify.