Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{4}a^{4}+1=119a^{4}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a^{4}.
a^{8}+1=119a^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
a^{8}+1-119a^{4}=0
Subtract 119a^{4} from both sides.
t^{2}-119t+1=0
Substitute t for a^{4}.
t=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -119 for b, and 1 for c in the quadratic formula.
t=\frac{119±33\sqrt{13}}{2}
Do the calculations.
t=\frac{33\sqrt{13}+119}{2} t=\frac{119-33\sqrt{13}}{2}
Solve the equation t=\frac{119±33\sqrt{13}}{2} when ± is plus and when ± is minus.
a=-\left(\frac{\sqrt{13}i}{2}+\frac{3}{2}i\right) a=-\frac{\sqrt{13}+3}{2} a=\frac{\sqrt{13}i}{2}+\frac{3}{2}i a=\frac{\sqrt{13}+3}{2} a=-\frac{\sqrt{13}i}{2}+\frac{3}{2}i a=\frac{3-\sqrt{13}}{2} a=-\left(-\frac{\sqrt{13}i}{2}+\frac{3}{2}i\right) a=-\frac{3-\sqrt{13}}{2}
Since a=t^{4}, the solutions are obtained by solving the equation for each t.
a^{4}a^{4}+1=119a^{4}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a^{4}.
a^{8}+1=119a^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
a^{8}+1-119a^{4}=0
Subtract 119a^{4} from both sides.
t^{2}-119t+1=0
Substitute t for a^{4}.
t=\frac{-\left(-119\right)±\sqrt{\left(-119\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -119 for b, and 1 for c in the quadratic formula.
t=\frac{119±33\sqrt{13}}{2}
Do the calculations.
t=\frac{33\sqrt{13}+119}{2} t=\frac{119-33\sqrt{13}}{2}
Solve the equation t=\frac{119±33\sqrt{13}}{2} when ± is plus and when ± is minus.
a=\frac{\sqrt{13}+3}{2} a=-\frac{\sqrt{13}+3}{2} a=-\frac{3-\sqrt{13}}{2} a=\frac{3-\sqrt{13}}{2}
Since a=t^{4}, the solutions are obtained by evaluating a=±\sqrt[4]{t} for positive t.