Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{3}\left(x^{3}y^{3}+1\right)
Factor out a^{3}.
\left(xy+1\right)\left(x^{2}y^{2}-xy+1\right)
Consider x^{3}y^{3}+1. Rewrite x^{3}y^{3}+1 as \left(xy\right)^{3}+1^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
a^{3}\left(xy+1\right)\left(x^{2}y^{2}-xy+1\right)
Rewrite the complete factored expression.