Factor
\left(a+1\right)\left(a-2\right)^{2}
Evaluate
\left(a+1\right)\left(a-2\right)^{2}
Share
Copied to clipboard
\left(a-2\right)\left(a^{2}-a-2\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 1. One such root is 2. Factor the polynomial by dividing it by a-2.
p+q=-1 pq=1\left(-2\right)=-2
Consider a^{2}-a-2. Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa-2. To find p and q, set up a system to be solved.
p=-2 q=1
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(a^{2}-2a\right)+\left(a-2\right)
Rewrite a^{2}-a-2 as \left(a^{2}-2a\right)+\left(a-2\right).
a\left(a-2\right)+a-2
Factor out a in a^{2}-2a.
\left(a-2\right)\left(a+1\right)
Factor out common term a-2 by using distributive property.
\left(a+1\right)\left(a-2\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}