Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-a^{3}=3a^{2}b+3ab^{2}+b^{3}
Subtract a^{3} from both sides.
b^{3}+3ba^{2}+3ab^{2}=3a^{2}b+3ab^{2}+b^{3}
Combine a^{3} and -a^{3} to get 0.
b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
b^{3}+3ab^{2}=3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
b^{3}+3ab^{2}-3ab^{2}=b^{3}
Subtract 3ab^{2} from both sides.
b^{3}=b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=a^{3}+3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
a^{3}+b^{3}+3ab^{2}=a^{3}+3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
a^{3}+b^{3}+3ab^{2}-3ab^{2}=a^{3}+b^{3}
Subtract 3ab^{2} from both sides.
a^{3}+b^{3}=a^{3}+b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
a^{3}+b^{3}-b^{3}=a^{3}
Subtract b^{3} from both sides.
a^{3}=a^{3}
Combine b^{3} and -b^{3} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-a^{3}=3a^{2}b+3ab^{2}+b^{3}
Subtract a^{3} from both sides.
b^{3}+3ba^{2}+3ab^{2}=3a^{2}b+3ab^{2}+b^{3}
Combine a^{3} and -a^{3} to get 0.
b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
b^{3}+3ab^{2}=3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
b^{3}+3ab^{2}-3ab^{2}=b^{3}
Subtract 3ab^{2} from both sides.
b^{3}=b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=a^{3}+3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
a^{3}+b^{3}+3ab^{2}=a^{3}+3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
a^{3}+b^{3}+3ab^{2}-3ab^{2}=a^{3}+b^{3}
Subtract 3ab^{2} from both sides.
a^{3}+b^{3}=a^{3}+b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
a^{3}+b^{3}-b^{3}=a^{3}
Subtract b^{3} from both sides.
a^{3}=a^{3}
Combine b^{3} and -b^{3} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}