Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-a^{3}=3a^{2}b+3ab^{2}+b^{3}
Subtract a^{3} from both sides.
b^{3}+3ba^{2}+3ab^{2}=3a^{2}b+3ab^{2}+b^{3}
Combine a^{3} and -a^{3} to get 0.
b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
b^{3}+3ab^{2}=3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
b^{3}+3ab^{2}-3ab^{2}=b^{3}
Subtract 3ab^{2} from both sides.
b^{3}=b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=a^{3}+3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
a^{3}+b^{3}+3ab^{2}=a^{3}+3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
a^{3}+b^{3}+3ab^{2}-3ab^{2}=a^{3}+b^{3}
Subtract 3ab^{2} from both sides.
a^{3}+b^{3}=a^{3}+b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
a^{3}+b^{3}-b^{3}=a^{3}
Subtract b^{3} from both sides.
a^{3}=a^{3}
Combine b^{3} and -b^{3} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-a^{3}=3a^{2}b+3ab^{2}+b^{3}
Subtract a^{3} from both sides.
b^{3}+3ba^{2}+3ab^{2}=3a^{2}b+3ab^{2}+b^{3}
Combine a^{3} and -a^{3} to get 0.
b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
b^{3}+3ab^{2}=3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
b^{3}+3ab^{2}-3ab^{2}=b^{3}
Subtract 3ab^{2} from both sides.
b^{3}=b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
a^{3}+b^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}-3ab\left(a+b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
a^{3}+b^{3}+3ab\left(a+b\right)=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Add 3ab\left(a+b\right) to both sides.
a^{3}+b^{3}+3ba^{2}+3ab^{2}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
Use the distributive property to multiply 3ab by a+b.
a^{3}+b^{3}+3ba^{2}+3ab^{2}-3a^{2}b=a^{3}+3ab^{2}+b^{3}
Subtract 3a^{2}b from both sides.
a^{3}+b^{3}+3ab^{2}=a^{3}+3ab^{2}+b^{3}
Combine 3ba^{2} and -3a^{2}b to get 0.
a^{3}+b^{3}+3ab^{2}-3ab^{2}=a^{3}+b^{3}
Subtract 3ab^{2} from both sides.
a^{3}+b^{3}=a^{3}+b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
a^{3}+b^{3}-b^{3}=a^{3}
Subtract b^{3} from both sides.
a^{3}=a^{3}
Combine b^{3} and -b^{3} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.