Factor
\left(a-1\right)^{2}\left(a+1\right)^{2}\left(a^{2}-a+1\right)\left(a^{2}+a+1\right)a^{4}\left(a^{2}+1\right)^{2}\left(a^{4}-a^{2}+1\right)
Evaluate
a^{20}-a^{16}-a^{8}+a^{4}
Share
Copied to clipboard
a^{2}\left(a^{2}+a^{18}-a^{6}-a^{14}\right)
Factor out a^{2}.
a^{18}-a^{14}-a^{6}+a^{2}
Consider a^{18}-a^{14}+1-a^{6}+a^{2}-1. Multiply and combine like terms.
a^{2}\left(a^{16}-a^{12}-a^{4}+1\right)
Consider a^{18}-a^{14}-a^{6}+a^{2}. Factor out a^{2}.
a^{12}\left(a^{4}-1\right)-\left(a^{4}-1\right)
Consider a^{16}-a^{12}-a^{4}+1. Do the grouping a^{16}-a^{12}-a^{4}+1=\left(a^{16}-a^{12}\right)+\left(-a^{4}+1\right), and factor out a^{12} in the first and -1 in the second group.
\left(a^{4}-1\right)\left(a^{12}-1\right)
Factor out common term a^{4}-1 by using distributive property.
\left(a^{2}-1\right)\left(a^{2}+1\right)
Consider a^{4}-1. Rewrite a^{4}-1 as \left(a^{2}\right)^{2}-1^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)
Consider a^{2}-1. Rewrite a^{2}-1 as a^{2}-1^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{6}-1\right)\left(a^{6}+1\right)
Consider a^{12}-1. Rewrite a^{12}-1 as \left(a^{6}\right)^{2}-1^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{3}-1\right)\left(a^{3}+1\right)
Consider a^{6}-1. Rewrite a^{6}-1 as \left(a^{3}\right)^{2}-1^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a^{2}+a+1\right)
Consider a^{3}-1. Rewrite a^{3}-1 as a^{3}-1^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a+1\right)\left(a^{2}-a+1\right)
Consider a^{3}+1. Rewrite a^{3}+1 as a^{3}+1^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a^{2}+1\right)\left(a^{4}-a^{2}+1\right)
Consider a^{6}+1. Rewrite a^{6}+1 as \left(a^{2}\right)^{3}+1^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
a^{2}a^{2}\left(a-1\right)^{2}\left(a+1\right)^{2}\left(a^{2}+1\right)^{2}\left(a^{2}+a+1\right)\left(a^{2}-a+1\right)\left(a^{4}-a^{2}+1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: a^{2}-a+1,a^{2}+a+1,a^{4}-a^{2}+1,a^{2},a^{2}+1.
a^{20}-a^{16}-a^{8}+a^{4}
Combine a^{2} and -a^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}