Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

x^{3}\left(a^{2}-b^{2}\right)-y^{3}\left(a^{2}-b^{2}\right)
Do the grouping a^{2}x^{3}-x^{3}b^{2}-a^{2}y^{3}+y^{3}b^{2}=\left(a^{2}x^{3}-x^{3}b^{2}\right)+\left(-a^{2}y^{3}+y^{3}b^{2}\right), and factor out x^{3} in the first and -y^{3} in the second group.
\left(a^{2}-b^{2}\right)\left(x^{3}-y^{3}\right)
Factor out common term a^{2}-b^{2} by using distributive property.
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Consider x^{3}-y^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Rewrite the complete factored expression.