Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

m^{2}\left(a^{2}-b^{2}\right)-n^{2}\left(a^{2}-b^{2}\right)
Do the grouping a^{2}m^{2}-b^{2}m^{2}-a^{2}n^{2}+b^{2}n^{2}=\left(a^{2}m^{2}-b^{2}m^{2}\right)+\left(-a^{2}n^{2}+b^{2}n^{2}\right), and factor out m^{2} in the first and -n^{2} in the second group.
\left(a^{2}-b^{2}\right)\left(m^{2}-n^{2}\right)
Factor out common term a^{2}-b^{2} by using distributive property.
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(m-n\right)\left(m+n\right)
Consider m^{2}-n^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)\left(m-n\right)\left(m+n\right)
Rewrite the complete factored expression.