Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

ba^{2}\left(y^{2}x^{6}-z^{4}\right)+c^{3}\left(y^{2}x^{6}-z^{4}\right)
Do the grouping a^{2}bx^{6}y^{2}-c^{3}z^{4}-a^{2}bz^{4}+c^{3}x^{6}y^{2}=\left(a^{2}bx^{6}y^{2}-a^{2}bz^{4}\right)+\left(c^{3}x^{6}y^{2}-c^{3}z^{4}\right), and factor out ba^{2} in the first and c^{3} in the second group.
\left(y^{2}x^{6}-z^{4}\right)\left(ba^{2}+c^{3}\right)
Factor out common term y^{2}x^{6}-z^{4} by using distributive property.
\left(x^{3}y-z^{2}\right)\left(x^{3}y+z^{2}\right)
Consider y^{2}x^{6}-z^{4}. Rewrite y^{2}x^{6}-z^{4} as \left(x^{3}y\right)^{2}-\left(z^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(yx^{3}-z^{2}\right)\left(yx^{3}+z^{2}\right)
Reorder the terms.
\left(ba^{2}+c^{3}\right)\left(yx^{3}-z^{2}\right)\left(yx^{3}+z^{2}\right)
Rewrite the complete factored expression.