Solve for b (complex solution)
b=\frac{a^{2}-140}{a^{a}}
Solve for b
b=\frac{a^{2}-140}{a^{a}}
\left(a<0\text{ and }Denominator(a)\text{bmod}2=1\right)\text{ or }a>0
Share
Copied to clipboard
a^{2}-ba^{a}=140
Add 140 to both sides. Anything plus zero gives itself.
-ba^{a}=140-a^{2}
Subtract a^{2} from both sides.
\left(-a^{a}\right)b=140-a^{2}
The equation is in standard form.
\frac{\left(-a^{a}\right)b}{-a^{a}}=\frac{140-a^{2}}{-a^{a}}
Divide both sides by -a^{a}.
b=\frac{140-a^{2}}{-a^{a}}
Dividing by -a^{a} undoes the multiplication by -a^{a}.
b=a^{2-a}-\frac{140}{a^{a}}
Divide -a^{2}+140 by -a^{a}.
a^{2}-ba^{a}=140
Add 140 to both sides. Anything plus zero gives itself.
-ba^{a}=140-a^{2}
Subtract a^{2} from both sides.
\left(-a^{a}\right)b=140-a^{2}
The equation is in standard form.
\frac{\left(-a^{a}\right)b}{-a^{a}}=\frac{140-a^{2}}{-a^{a}}
Divide both sides by -a^{a}.
b=\frac{140-a^{2}}{-a^{a}}
Dividing by -a^{a} undoes the multiplication by -a^{a}.
b=a^{2-a}-\frac{140}{a^{a}}
Divide 140-a^{2} by -a^{a}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}