Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-6a-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\right)±\sqrt{36-4\left(-5\right)}}{2}
Square -6.
a=\frac{-\left(-6\right)±\sqrt{36+20}}{2}
Multiply -4 times -5.
a=\frac{-\left(-6\right)±\sqrt{56}}{2}
Add 36 to 20.
a=\frac{-\left(-6\right)±2\sqrt{14}}{2}
Take the square root of 56.
a=\frac{6±2\sqrt{14}}{2}
The opposite of -6 is 6.
a=\frac{2\sqrt{14}+6}{2}
Now solve the equation a=\frac{6±2\sqrt{14}}{2} when ± is plus. Add 6 to 2\sqrt{14}.
a=\sqrt{14}+3
Divide 6+2\sqrt{14} by 2.
a=\frac{6-2\sqrt{14}}{2}
Now solve the equation a=\frac{6±2\sqrt{14}}{2} when ± is minus. Subtract 2\sqrt{14} from 6.
a=3-\sqrt{14}
Divide 6-2\sqrt{14} by 2.
a=\sqrt{14}+3 a=3-\sqrt{14}
The equation is now solved.
a^{2}-6a-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-6a-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
a^{2}-6a=-\left(-5\right)
Subtracting -5 from itself leaves 0.
a^{2}-6a=5
Subtract -5 from 0.
a^{2}-6a+\left(-3\right)^{2}=5+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-6a+9=5+9
Square -3.
a^{2}-6a+9=14
Add 5 to 9.
\left(a-3\right)^{2}=14
Factor a^{2}-6a+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
a-3=\sqrt{14} a-3=-\sqrt{14}
Simplify.
a=\sqrt{14}+3 a=3-\sqrt{14}
Add 3 to both sides of the equation.
x ^ 2 -6x -5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 6 rs = -5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 3 - u s = 3 + u
Two numbers r and s sum up to 6 exactly when the average of the two numbers is \frac{1}{2}*6 = 3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(3 - u) (3 + u) = -5
To solve for unknown quantity u, substitute these in the product equation rs = -5
9 - u^2 = -5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5-9 = -14
Simplify the expression by subtracting 9 on both sides
u^2 = 14 u = \pm\sqrt{14} = \pm \sqrt{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =3 - \sqrt{14} = -0.742 s = 3 + \sqrt{14} = 6.742
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.