Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-5a=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a^{2}-5a-10=10-10
Subtract 10 from both sides of the equation.
a^{2}-5a-10=0
Subtracting 10 from itself leaves 0.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\left(-10\right)}}{2}
Square -5.
a=\frac{-\left(-5\right)±\sqrt{25+40}}{2}
Multiply -4 times -10.
a=\frac{-\left(-5\right)±\sqrt{65}}{2}
Add 25 to 40.
a=\frac{5±\sqrt{65}}{2}
The opposite of -5 is 5.
a=\frac{\sqrt{65}+5}{2}
Now solve the equation a=\frac{5±\sqrt{65}}{2} when ± is plus. Add 5 to \sqrt{65}.
a=\frac{5-\sqrt{65}}{2}
Now solve the equation a=\frac{5±\sqrt{65}}{2} when ± is minus. Subtract \sqrt{65} from 5.
a=\frac{\sqrt{65}+5}{2} a=\frac{5-\sqrt{65}}{2}
The equation is now solved.
a^{2}-5a=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-5a+\left(-\frac{5}{2}\right)^{2}=10+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-5a+\frac{25}{4}=10+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-5a+\frac{25}{4}=\frac{65}{4}
Add 10 to \frac{25}{4}.
\left(a-\frac{5}{2}\right)^{2}=\frac{65}{4}
Factor a^{2}-5a+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
a-\frac{5}{2}=\frac{\sqrt{65}}{2} a-\frac{5}{2}=-\frac{\sqrt{65}}{2}
Simplify.
a=\frac{\sqrt{65}+5}{2} a=\frac{5-\sqrt{65}}{2}
Add \frac{5}{2} to both sides of the equation.