Factor
\left(a-4\right)^{2}
Evaluate
\left(a-4\right)^{2}
Share
Copied to clipboard
a^{2}-8a+16
Multiply and combine like terms.
p+q=-8 pq=1\times 16=16
Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa+16. To find p and q, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
p=-4 q=-4
The solution is the pair that gives sum -8.
\left(a^{2}-4a\right)+\left(-4a+16\right)
Rewrite a^{2}-8a+16 as \left(a^{2}-4a\right)+\left(-4a+16\right).
a\left(a-4\right)-4\left(a-4\right)
Factor out a in the first and -4 in the second group.
\left(a-4\right)\left(a-4\right)
Factor out common term a-4 by using distributive property.
\left(a-4\right)^{2}
Rewrite as a binomial square.
a^{2}-8a+16
Combine -4a and -4a to get -8a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}