Solve for a
a\in \left(-\infty,2-\sqrt{3}\right)\cup \left(\sqrt{3}+2,\infty\right)
Share
Copied to clipboard
a^{2}-4a+1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -4 for b, and 1 for c in the quadratic formula.
a=\frac{4±2\sqrt{3}}{2}
Do the calculations.
a=\sqrt{3}+2 a=2-\sqrt{3}
Solve the equation a=\frac{4±2\sqrt{3}}{2} when ± is plus and when ± is minus.
\left(a-\left(\sqrt{3}+2\right)\right)\left(a-\left(2-\sqrt{3}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
a-\left(\sqrt{3}+2\right)<0 a-\left(2-\sqrt{3}\right)<0
For the product to be positive, a-\left(\sqrt{3}+2\right) and a-\left(2-\sqrt{3}\right) have to be both negative or both positive. Consider the case when a-\left(\sqrt{3}+2\right) and a-\left(2-\sqrt{3}\right) are both negative.
a<2-\sqrt{3}
The solution satisfying both inequalities is a<2-\sqrt{3}.
a-\left(2-\sqrt{3}\right)>0 a-\left(\sqrt{3}+2\right)>0
Consider the case when a-\left(\sqrt{3}+2\right) and a-\left(2-\sqrt{3}\right) are both positive.
a>\sqrt{3}+2
The solution satisfying both inequalities is a>\sqrt{3}+2.
a<2-\sqrt{3}\text{; }a>\sqrt{3}+2
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}