Evaluate
\left(2a-1\right)\left(a\left(a+1\right)\right)^{2}
Factor
\left(2a-1\right)a^{2}\left(a+1\right)^{2}
Quiz
Polynomial
5 problems similar to:
a ^ { 2 } - 2 a ^ { 2 } + 3 a ^ { 4 } - 4 a ^ { 5 } + 6 a ^ { 5 } =
Share
Copied to clipboard
-a^{2}+3a^{4}-4a^{5}+6a^{5}
Combine a^{2} and -2a^{2} to get -a^{2}.
-a^{2}+3a^{4}+2a^{5}
Combine -4a^{5} and 6a^{5} to get 2a^{5}.
a^{2}\left(-1+3a^{2}+2a^{3}\right)
Factor out a^{2}.
2a^{3}+3a^{2}-1
Consider 1-2+3a^{2}-4a^{3}+6a^{3}. Multiply and combine like terms.
\left(2a-1\right)\left(a^{2}+2a+1\right)
Consider 2a^{3}+3a^{2}-1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 2. One such root is \frac{1}{2}. Factor the polynomial by dividing it by 2a-1.
\left(a+1\right)^{2}
Consider a^{2}+2a+1. Use the perfect square formula, p^{2}+2pq+q^{2}=\left(p+q\right)^{2}, where p=a and q=1.
a^{2}\left(2a-1\right)\left(a+1\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}