Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(a^{2}+a-1)
Combine -2a and 3a to get a.
a^{2}+a-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-1±\sqrt{1-4\left(-1\right)}}{2}
Square 1.
a=\frac{-1±\sqrt{1+4}}{2}
Multiply -4 times -1.
a=\frac{-1±\sqrt{5}}{2}
Add 1 to 4.
a=\frac{\sqrt{5}-1}{2}
Now solve the equation a=\frac{-1±\sqrt{5}}{2} when ± is plus. Add -1 to \sqrt{5}.
a=\frac{-\sqrt{5}-1}{2}
Now solve the equation a=\frac{-1±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from -1.
a^{2}+a-1=\left(a-\frac{\sqrt{5}-1}{2}\right)\left(a-\frac{-\sqrt{5}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{5}}{2} for x_{1} and \frac{-1-\sqrt{5}}{2} for x_{2}.
a^{2}+a-1
Combine -2a and 3a to get a.