Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{a-b-a}{2}\right)
Divide 6a\left(a-b\right) by 2 to get 3a\left(a-b\right).
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}\right)
Combine a and -a to get 0.
a^{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To find the opposite of \frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}, find the opposite of each term.
\frac{2a^{2}}{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{2}{2}.
\frac{2a^{2}-ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
Since \frac{2a^{2}}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
a^{2}-\frac{ab}{2}-3a^{2}+3ab-\frac{-b}{2}
Use the distributive property to multiply -3a by a-b.
-2a^{2}-\frac{ab}{2}+3ab-\frac{-b}{2}
Combine a^{2} and -3a^{2} to get -2a^{2}.
\frac{2\left(-2a^{2}+3ab\right)}{2}-\frac{ab}{2}-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2a^{2}+3ab times \frac{2}{2}.
\frac{2\left(-2a^{2}+3ab\right)-ab}{2}-\frac{-b}{2}
Since \frac{2\left(-2a^{2}+3ab\right)}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+6ab-ab}{2}-\frac{-b}{2}
Do the multiplications in 2\left(-2a^{2}+3ab\right)-ab.
\frac{-4a^{2}+5ab}{2}-\frac{-b}{2}
Combine like terms in -4a^{2}+6ab-ab.
\frac{-4a^{2}+5ab-\left(-b\right)}{2}
Since \frac{-4a^{2}+5ab}{2} and \frac{-b}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+5ab+b}{2}
Do the multiplications in -4a^{2}+5ab-\left(-b\right).
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{a-b-a}{2}\right)
Divide 6a\left(a-b\right) by 2 to get 3a\left(a-b\right).
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}\right)
Combine a and -a to get 0.
a^{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To find the opposite of \frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}, find the opposite of each term.
\frac{2a^{2}}{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{2}{2}.
\frac{2a^{2}-ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
Since \frac{2a^{2}}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
a^{2}-\frac{ab}{2}-3a^{2}+3ab-\frac{-b}{2}
Use the distributive property to multiply -3a by a-b.
-2a^{2}-\frac{ab}{2}+3ab-\frac{-b}{2}
Combine a^{2} and -3a^{2} to get -2a^{2}.
\frac{2\left(-2a^{2}+3ab\right)}{2}-\frac{ab}{2}-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2a^{2}+3ab times \frac{2}{2}.
\frac{2\left(-2a^{2}+3ab\right)-ab}{2}-\frac{-b}{2}
Since \frac{2\left(-2a^{2}+3ab\right)}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+6ab-ab}{2}-\frac{-b}{2}
Do the multiplications in 2\left(-2a^{2}+3ab\right)-ab.
\frac{-4a^{2}+5ab}{2}-\frac{-b}{2}
Combine like terms in -4a^{2}+6ab-ab.
\frac{-4a^{2}+5ab-\left(-b\right)}{2}
Since \frac{-4a^{2}+5ab}{2} and \frac{-b}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+5ab+b}{2}
Do the multiplications in -4a^{2}+5ab-\left(-b\right).