Evaluate
\frac{b+5ab-4a^{2}}{2}
Expand
\frac{5ab}{2}-2a^{2}+\frac{b}{2}
Share
Copied to clipboard
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{a-b-a}{2}\right)
Divide 6a\left(a-b\right) by 2 to get 3a\left(a-b\right).
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}\right)
Combine a and -a to get 0.
a^{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To find the opposite of \frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}, find the opposite of each term.
\frac{2a^{2}}{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{2}{2}.
\frac{2a^{2}-ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
Since \frac{2a^{2}}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
a^{2}-\frac{ab}{2}-3a^{2}+3ab-\frac{-b}{2}
Use the distributive property to multiply -3a by a-b.
-2a^{2}-\frac{ab}{2}+3ab-\frac{-b}{2}
Combine a^{2} and -3a^{2} to get -2a^{2}.
\frac{2\left(-2a^{2}+3ab\right)}{2}-\frac{ab}{2}-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2a^{2}+3ab times \frac{2}{2}.
\frac{2\left(-2a^{2}+3ab\right)-ab}{2}-\frac{-b}{2}
Since \frac{2\left(-2a^{2}+3ab\right)}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+6ab-ab}{2}-\frac{-b}{2}
Do the multiplications in 2\left(-2a^{2}+3ab\right)-ab.
\frac{-4a^{2}+5ab}{2}-\frac{-b}{2}
Combine like terms in -4a^{2}+6ab-ab.
\frac{-4a^{2}+5ab-\left(-b\right)}{2}
Since \frac{-4a^{2}+5ab}{2} and \frac{-b}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+5ab+b}{2}
Do the multiplications in -4a^{2}+5ab-\left(-b\right).
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{a-b-a}{2}\right)
Divide 6a\left(a-b\right) by 2 to get 3a\left(a-b\right).
a^{2}-\left(\frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}\right)
Combine a and -a to get 0.
a^{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To find the opposite of \frac{ab}{2}+3a\left(a-b\right)+\frac{-b}{2}, find the opposite of each term.
\frac{2a^{2}}{2}-\frac{ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{2}{2}.
\frac{2a^{2}-ab}{2}-3a\left(a-b\right)-\frac{-b}{2}
Since \frac{2a^{2}}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
a^{2}-\frac{ab}{2}-3a^{2}+3ab-\frac{-b}{2}
Use the distributive property to multiply -3a by a-b.
-2a^{2}-\frac{ab}{2}+3ab-\frac{-b}{2}
Combine a^{2} and -3a^{2} to get -2a^{2}.
\frac{2\left(-2a^{2}+3ab\right)}{2}-\frac{ab}{2}-\frac{-b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2a^{2}+3ab times \frac{2}{2}.
\frac{2\left(-2a^{2}+3ab\right)-ab}{2}-\frac{-b}{2}
Since \frac{2\left(-2a^{2}+3ab\right)}{2} and \frac{ab}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+6ab-ab}{2}-\frac{-b}{2}
Do the multiplications in 2\left(-2a^{2}+3ab\right)-ab.
\frac{-4a^{2}+5ab}{2}-\frac{-b}{2}
Combine like terms in -4a^{2}+6ab-ab.
\frac{-4a^{2}+5ab-\left(-b\right)}{2}
Since \frac{-4a^{2}+5ab}{2} and \frac{-b}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}+5ab+b}{2}
Do the multiplications in -4a^{2}+5ab-\left(-b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}