Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(a^{3}-a^{2}\right)x=a^{2}+a+2ax
Use the distributive property to multiply a^{2} by a-1.
a^{3}x-a^{2}x=a^{2}+a+2ax
Use the distributive property to multiply a^{3}-a^{2} by x.
a^{3}x-a^{2}x-2ax=a^{2}+a
Subtract 2ax from both sides.
\left(a^{3}-a^{2}-2a\right)x=a^{2}+a
Combine all terms containing x.
\frac{\left(a^{3}-a^{2}-2a\right)x}{a^{3}-a^{2}-2a}=\frac{a\left(a+1\right)}{a^{3}-a^{2}-2a}
Divide both sides by a^{3}-a^{2}-2a.
x=\frac{a\left(a+1\right)}{a^{3}-a^{2}-2a}
Dividing by a^{3}-a^{2}-2a undoes the multiplication by a^{3}-a^{2}-2a.
x=\frac{1}{a-2}
Divide a\left(1+a\right) by a^{3}-a^{2}-2a.
\left(a^{3}-a^{2}\right)x=a^{2}+a+2ax
Use the distributive property to multiply a^{2} by a-1.
a^{3}x-a^{2}x=a^{2}+a+2ax
Use the distributive property to multiply a^{3}-a^{2} by x.
a^{3}x-a^{2}x-2ax=a^{2}+a
Subtract 2ax from both sides.
\left(a^{3}-a^{2}-2a\right)x=a^{2}+a
Combine all terms containing x.
\frac{\left(a^{3}-a^{2}-2a\right)x}{a^{3}-a^{2}-2a}=\frac{a\left(a+1\right)}{a^{3}-a^{2}-2a}
Divide both sides by a^{3}-a^{2}-2a.
x=\frac{a\left(a+1\right)}{a^{3}-a^{2}-2a}
Dividing by a^{3}-a^{2}-2a undoes the multiplication by a^{3}-a^{2}-2a.
x=\frac{1}{a-2}
Divide a\left(1+a\right) by a^{3}-a^{2}-2a.