Evaluate
a\left(a-1\right)\left(4a-3\right)\left(4a+1\right)
Expand
16a^{4}-24a^{3}+5a^{2}+3a
Share
Copied to clipboard
a^{2}\left(16a^{2}-24a+9\right)-a\left(4a-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a-3\right)^{2}.
16a^{4}-24a^{3}+9a^{2}-a\left(4a-3\right)
Use the distributive property to multiply a^{2} by 16a^{2}-24a+9.
16a^{4}-24a^{3}+9a^{2}-\left(4a^{2}-3a\right)
Use the distributive property to multiply a by 4a-3.
16a^{4}-24a^{3}+9a^{2}-4a^{2}+3a
To find the opposite of 4a^{2}-3a, find the opposite of each term.
16a^{4}-24a^{3}+5a^{2}+3a
Combine 9a^{2} and -4a^{2} to get 5a^{2}.
a^{2}\left(16a^{2}-24a+9\right)-a\left(4a-3\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a-3\right)^{2}.
16a^{4}-24a^{3}+9a^{2}-a\left(4a-3\right)
Use the distributive property to multiply a^{2} by 16a^{2}-24a+9.
16a^{4}-24a^{3}+9a^{2}-\left(4a^{2}-3a\right)
Use the distributive property to multiply a by 4a-3.
16a^{4}-24a^{3}+9a^{2}-4a^{2}+3a
To find the opposite of 4a^{2}-3a, find the opposite of each term.
16a^{4}-24a^{3}+5a^{2}+3a
Combine 9a^{2} and -4a^{2} to get 5a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}