Evaluate
4+a-a^{2}
Expand
4+a-a^{2}
Share
Copied to clipboard
a^{2}\left(4a^{2}-12a+9\right)-\left(2a^{2}+a\right)^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3\right)^{2}.
4a^{4}-12a^{3}+9a^{2}-\left(2a^{2}+a\right)^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Use the distributive property to multiply a^{2} by 4a^{2}-12a+9.
4a^{4}-12a^{3}+9a^{2}-\left(4\left(a^{2}\right)^{2}+4a^{2}a+a^{2}\right)+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a^{2}+a\right)^{2}.
4a^{4}-12a^{3}+9a^{2}-\left(4a^{4}+4a^{2}a+a^{2}\right)+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4a^{4}-12a^{3}+9a^{2}-\left(4a^{4}+4a^{3}+a^{2}\right)+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
4a^{4}-12a^{3}+9a^{2}-4a^{4}-4a^{3}-a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
To find the opposite of 4a^{4}+4a^{3}+a^{2}, find the opposite of each term.
-12a^{3}+9a^{2}-4a^{3}-a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Combine 4a^{4} and -4a^{4} to get 0.
-16a^{3}+9a^{2}-a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Combine -12a^{3} and -4a^{3} to get -16a^{3}.
-16a^{3}+8a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Combine 9a^{2} and -a^{2} to get 8a^{2}.
-16a^{3}+8a^{2}+a\left(16a^{2}-8a+1\right)-\left(a-2\right)\left(a+2\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a-1\right)^{2}.
-16a^{3}+8a^{2}+16a^{3}-8a^{2}+a-\left(a-2\right)\left(a+2\right)
Use the distributive property to multiply a by 16a^{2}-8a+1.
8a^{2}-8a^{2}+a-\left(a-2\right)\left(a+2\right)
Combine -16a^{3} and 16a^{3} to get 0.
a-\left(a-2\right)\left(a+2\right)
Combine 8a^{2} and -8a^{2} to get 0.
a-\left(a^{2}-4\right)
Consider \left(a-2\right)\left(a+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
a-a^{2}+4
To find the opposite of a^{2}-4, find the opposite of each term.
a^{2}\left(4a^{2}-12a+9\right)-\left(2a^{2}+a\right)^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3\right)^{2}.
4a^{4}-12a^{3}+9a^{2}-\left(2a^{2}+a\right)^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Use the distributive property to multiply a^{2} by 4a^{2}-12a+9.
4a^{4}-12a^{3}+9a^{2}-\left(4\left(a^{2}\right)^{2}+4a^{2}a+a^{2}\right)+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a^{2}+a\right)^{2}.
4a^{4}-12a^{3}+9a^{2}-\left(4a^{4}+4a^{2}a+a^{2}\right)+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4a^{4}-12a^{3}+9a^{2}-\left(4a^{4}+4a^{3}+a^{2}\right)+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
4a^{4}-12a^{3}+9a^{2}-4a^{4}-4a^{3}-a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
To find the opposite of 4a^{4}+4a^{3}+a^{2}, find the opposite of each term.
-12a^{3}+9a^{2}-4a^{3}-a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Combine 4a^{4} and -4a^{4} to get 0.
-16a^{3}+9a^{2}-a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Combine -12a^{3} and -4a^{3} to get -16a^{3}.
-16a^{3}+8a^{2}+a\left(4a-1\right)^{2}-\left(a-2\right)\left(a+2\right)
Combine 9a^{2} and -a^{2} to get 8a^{2}.
-16a^{3}+8a^{2}+a\left(16a^{2}-8a+1\right)-\left(a-2\right)\left(a+2\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a-1\right)^{2}.
-16a^{3}+8a^{2}+16a^{3}-8a^{2}+a-\left(a-2\right)\left(a+2\right)
Use the distributive property to multiply a by 16a^{2}-8a+1.
8a^{2}-8a^{2}+a-\left(a-2\right)\left(a+2\right)
Combine -16a^{3} and 16a^{3} to get 0.
a-\left(a-2\right)\left(a+2\right)
Combine 8a^{2} and -8a^{2} to get 0.
a-\left(a^{2}-4\right)
Consider \left(a-2\right)\left(a+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
a-a^{2}+4
To find the opposite of a^{2}-4, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}