Solve for a
a=10
a=-10
Share
Copied to clipboard
a^{2}=\left(-10\right)^{2}
Multiply -2 and 5 to get -10.
a^{2}=100
Calculate -10 to the power of 2 and get 100.
a^{2}-100=0
Subtract 100 from both sides.
\left(a-10\right)\left(a+10\right)=0
Consider a^{2}-100. Rewrite a^{2}-100 as a^{2}-10^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=10 a=-10
To find equation solutions, solve a-10=0 and a+10=0.
a^{2}=\left(-10\right)^{2}
Multiply -2 and 5 to get -10.
a^{2}=100
Calculate -10 to the power of 2 and get 100.
a=10 a=-10
Take the square root of both sides of the equation.
a^{2}=\left(-10\right)^{2}
Multiply -2 and 5 to get -10.
a^{2}=100
Calculate -10 to the power of 2 and get 100.
a^{2}-100=0
Subtract 100 from both sides.
a=\frac{0±\sqrt{0^{2}-4\left(-100\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-100\right)}}{2}
Square 0.
a=\frac{0±\sqrt{400}}{2}
Multiply -4 times -100.
a=\frac{0±20}{2}
Take the square root of 400.
a=10
Now solve the equation a=\frac{0±20}{2} when ± is plus. Divide 20 by 2.
a=-10
Now solve the equation a=\frac{0±20}{2} when ± is minus. Divide -20 by 2.
a=10 a=-10
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}