Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{x\left(x+2b\right)}{2\left(x+b\right)}\text{, }&b\neq -x\\a\in \mathrm{C}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{x\left(x+2a\right)}{2\left(x+a\right)}\text{, }&a\neq -x\\b\in \mathrm{C}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{x\left(x+2b\right)}{2\left(x+b\right)}\text{, }&b\neq -x\\a\in \mathrm{R}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{x\left(x+2a\right)}{2\left(x+a\right)}\text{, }&a\neq -x\\b\in \mathrm{R}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
a^{2}+b^{2}=x^{2}+2ax+2bx+2ab+a^{2}+b^{2}
Square a+b+x.
a^{2}+b^{2}-2ax=x^{2}+2bx+2ab+a^{2}+b^{2}
Subtract 2ax from both sides.
a^{2}+b^{2}-2ax-2ab=x^{2}+2bx+a^{2}+b^{2}
Subtract 2ab from both sides.
a^{2}+b^{2}-2ax-2ab-a^{2}=x^{2}+2bx+b^{2}
Subtract a^{2} from both sides.
b^{2}-2ax-2ab=x^{2}+2bx+b^{2}
Combine a^{2} and -a^{2} to get 0.
-2ax-2ab=x^{2}+2bx+b^{2}-b^{2}
Subtract b^{2} from both sides.
-2ax-2ab=x^{2}+2bx
Combine b^{2} and -b^{2} to get 0.
\left(-2x-2b\right)a=x^{2}+2bx
Combine all terms containing a.
\frac{\left(-2x-2b\right)a}{-2x-2b}=\frac{x\left(x+2b\right)}{-2x-2b}
Divide both sides by -2b-2x.
a=\frac{x\left(x+2b\right)}{-2x-2b}
Dividing by -2b-2x undoes the multiplication by -2b-2x.
a=-\frac{x\left(x+2b\right)}{2\left(x+b\right)}
Divide x\left(x+2b\right) by -2b-2x.
a^{2}+b^{2}=x^{2}+2ax+2bx+2ab+a^{2}+b^{2}
Square a+b+x.
a^{2}+b^{2}-2bx=x^{2}+2ax+2ab+a^{2}+b^{2}
Subtract 2bx from both sides.
a^{2}+b^{2}-2bx-2ab=x^{2}+2ax+a^{2}+b^{2}
Subtract 2ab from both sides.
a^{2}+b^{2}-2bx-2ab-b^{2}=x^{2}+2ax+a^{2}
Subtract b^{2} from both sides.
a^{2}-2bx-2ab=x^{2}+2ax+a^{2}
Combine b^{2} and -b^{2} to get 0.
-2bx-2ab=x^{2}+2ax+a^{2}-a^{2}
Subtract a^{2} from both sides.
-2bx-2ab=x^{2}+2ax
Combine a^{2} and -a^{2} to get 0.
\left(-2x-2a\right)b=x^{2}+2ax
Combine all terms containing b.
\frac{\left(-2x-2a\right)b}{-2x-2a}=\frac{x\left(x+2a\right)}{-2x-2a}
Divide both sides by -2a-2x.
b=\frac{x\left(x+2a\right)}{-2x-2a}
Dividing by -2a-2x undoes the multiplication by -2a-2x.
b=-\frac{x\left(x+2a\right)}{2\left(x+a\right)}
Divide x\left(x+2a\right) by -2a-2x.
a^{2}+b^{2}=x^{2}+2ax+2bx+2ab+a^{2}+b^{2}
Square a+b+x.
a^{2}+b^{2}-2ax=x^{2}+2bx+2ab+a^{2}+b^{2}
Subtract 2ax from both sides.
a^{2}+b^{2}-2ax-2ab=x^{2}+2bx+a^{2}+b^{2}
Subtract 2ab from both sides.
a^{2}+b^{2}-2ax-2ab-a^{2}=x^{2}+2bx+b^{2}
Subtract a^{2} from both sides.
b^{2}-2ax-2ab=x^{2}+2bx+b^{2}
Combine a^{2} and -a^{2} to get 0.
-2ax-2ab=x^{2}+2bx+b^{2}-b^{2}
Subtract b^{2} from both sides.
-2ax-2ab=x^{2}+2bx
Combine b^{2} and -b^{2} to get 0.
\left(-2x-2b\right)a=x^{2}+2bx
Combine all terms containing a.
\frac{\left(-2x-2b\right)a}{-2x-2b}=\frac{x\left(x+2b\right)}{-2x-2b}
Divide both sides by -2b-2x.
a=\frac{x\left(x+2b\right)}{-2x-2b}
Dividing by -2b-2x undoes the multiplication by -2b-2x.
a=-\frac{x\left(x+2b\right)}{2\left(x+b\right)}
Divide x\left(x+2b\right) by -2b-2x.
a^{2}+b^{2}=x^{2}+2ax+2bx+2ab+a^{2}+b^{2}
Square a+b+x.
a^{2}+b^{2}-2bx=x^{2}+2ax+2ab+a^{2}+b^{2}
Subtract 2bx from both sides.
a^{2}+b^{2}-2bx-2ab=x^{2}+2ax+a^{2}+b^{2}
Subtract 2ab from both sides.
a^{2}+b^{2}-2bx-2ab-b^{2}=x^{2}+2ax+a^{2}
Subtract b^{2} from both sides.
a^{2}-2bx-2ab=x^{2}+2ax+a^{2}
Combine b^{2} and -b^{2} to get 0.
-2bx-2ab=x^{2}+2ax+a^{2}-a^{2}
Subtract a^{2} from both sides.
-2bx-2ab=x^{2}+2ax
Combine a^{2} and -a^{2} to get 0.
\left(-2x-2a\right)b=x^{2}+2ax
Combine all terms containing b.
\frac{\left(-2x-2a\right)b}{-2x-2a}=\frac{x\left(x+2a\right)}{-2x-2a}
Divide both sides by -2a-2x.
b=\frac{x\left(x+2a\right)}{-2x-2a}
Dividing by -2a-2x undoes the multiplication by -2a-2x.
b=-\frac{x\left(x+2a\right)}{2\left(x+a\right)}
Divide x\left(x+2a\right) by -2a-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}