Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(10a^{2}+6a-9)
Combine a^{2} and 9a^{2} to get 10a^{2}.
10a^{2}+6a-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-6±\sqrt{6^{2}-4\times 10\left(-9\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-6±\sqrt{36-4\times 10\left(-9\right)}}{2\times 10}
Square 6.
a=\frac{-6±\sqrt{36-40\left(-9\right)}}{2\times 10}
Multiply -4 times 10.
a=\frac{-6±\sqrt{36+360}}{2\times 10}
Multiply -40 times -9.
a=\frac{-6±\sqrt{396}}{2\times 10}
Add 36 to 360.
a=\frac{-6±6\sqrt{11}}{2\times 10}
Take the square root of 396.
a=\frac{-6±6\sqrt{11}}{20}
Multiply 2 times 10.
a=\frac{6\sqrt{11}-6}{20}
Now solve the equation a=\frac{-6±6\sqrt{11}}{20} when ± is plus. Add -6 to 6\sqrt{11}.
a=\frac{3\sqrt{11}-3}{10}
Divide -6+6\sqrt{11} by 20.
a=\frac{-6\sqrt{11}-6}{20}
Now solve the equation a=\frac{-6±6\sqrt{11}}{20} when ± is minus. Subtract 6\sqrt{11} from -6.
a=\frac{-3\sqrt{11}-3}{10}
Divide -6-6\sqrt{11} by 20.
10a^{2}+6a-9=10\left(a-\frac{3\sqrt{11}-3}{10}\right)\left(a-\frac{-3\sqrt{11}-3}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+3\sqrt{11}}{10} for x_{1} and \frac{-3-3\sqrt{11}}{10} for x_{2}.
10a^{2}+6a-9
Combine a^{2} and 9a^{2} to get 10a^{2}.