Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+6a+44-20a+\left(11-5a\right)^{2}-21=0
Use the distributive property to multiply 4 by 11-5a.
a^{2}-14a+44+\left(11-5a\right)^{2}-21=0
Combine 6a and -20a to get -14a.
a^{2}-14a+44+121-110a+25a^{2}-21=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-5a\right)^{2}.
a^{2}-14a+165-110a+25a^{2}-21=0
Add 44 and 121 to get 165.
a^{2}-124a+165+25a^{2}-21=0
Combine -14a and -110a to get -124a.
26a^{2}-124a+165-21=0
Combine a^{2} and 25a^{2} to get 26a^{2}.
26a^{2}-124a+144=0
Subtract 21 from 165 to get 144.
a=\frac{-\left(-124\right)±\sqrt{\left(-124\right)^{2}-4\times 26\times 144}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26 for a, -124 for b, and 144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-124\right)±\sqrt{15376-4\times 26\times 144}}{2\times 26}
Square -124.
a=\frac{-\left(-124\right)±\sqrt{15376-104\times 144}}{2\times 26}
Multiply -4 times 26.
a=\frac{-\left(-124\right)±\sqrt{15376-14976}}{2\times 26}
Multiply -104 times 144.
a=\frac{-\left(-124\right)±\sqrt{400}}{2\times 26}
Add 15376 to -14976.
a=\frac{-\left(-124\right)±20}{2\times 26}
Take the square root of 400.
a=\frac{124±20}{2\times 26}
The opposite of -124 is 124.
a=\frac{124±20}{52}
Multiply 2 times 26.
a=\frac{144}{52}
Now solve the equation a=\frac{124±20}{52} when ± is plus. Add 124 to 20.
a=\frac{36}{13}
Reduce the fraction \frac{144}{52} to lowest terms by extracting and canceling out 4.
a=\frac{104}{52}
Now solve the equation a=\frac{124±20}{52} when ± is minus. Subtract 20 from 124.
a=2
Divide 104 by 52.
a=\frac{36}{13} a=2
The equation is now solved.
a^{2}+6a+44-20a+\left(11-5a\right)^{2}-21=0
Use the distributive property to multiply 4 by 11-5a.
a^{2}-14a+44+\left(11-5a\right)^{2}-21=0
Combine 6a and -20a to get -14a.
a^{2}-14a+44+121-110a+25a^{2}-21=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-5a\right)^{2}.
a^{2}-14a+165-110a+25a^{2}-21=0
Add 44 and 121 to get 165.
a^{2}-124a+165+25a^{2}-21=0
Combine -14a and -110a to get -124a.
26a^{2}-124a+165-21=0
Combine a^{2} and 25a^{2} to get 26a^{2}.
26a^{2}-124a+144=0
Subtract 21 from 165 to get 144.
26a^{2}-124a=-144
Subtract 144 from both sides. Anything subtracted from zero gives its negation.
\frac{26a^{2}-124a}{26}=-\frac{144}{26}
Divide both sides by 26.
a^{2}+\left(-\frac{124}{26}\right)a=-\frac{144}{26}
Dividing by 26 undoes the multiplication by 26.
a^{2}-\frac{62}{13}a=-\frac{144}{26}
Reduce the fraction \frac{-124}{26} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{62}{13}a=-\frac{72}{13}
Reduce the fraction \frac{-144}{26} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{62}{13}a+\left(-\frac{31}{13}\right)^{2}=-\frac{72}{13}+\left(-\frac{31}{13}\right)^{2}
Divide -\frac{62}{13}, the coefficient of the x term, by 2 to get -\frac{31}{13}. Then add the square of -\frac{31}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{62}{13}a+\frac{961}{169}=-\frac{72}{13}+\frac{961}{169}
Square -\frac{31}{13} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{62}{13}a+\frac{961}{169}=\frac{25}{169}
Add -\frac{72}{13} to \frac{961}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{31}{13}\right)^{2}=\frac{25}{169}
Factor a^{2}-\frac{62}{13}a+\frac{961}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{31}{13}\right)^{2}}=\sqrt{\frac{25}{169}}
Take the square root of both sides of the equation.
a-\frac{31}{13}=\frac{5}{13} a-\frac{31}{13}=-\frac{5}{13}
Simplify.
a=\frac{36}{13} a=2
Add \frac{31}{13} to both sides of the equation.