Solve for a
a=\frac{\sqrt{85}-6}{7}\approx 0.459934922
a=\frac{-\sqrt{85}-6}{7}\approx -2.174220637
Share
Copied to clipboard
a^{2}+12a+3+6a^{2}-4=6
Combine 5a and 7a to get 12a.
7a^{2}+12a+3-4=6
Combine a^{2} and 6a^{2} to get 7a^{2}.
7a^{2}+12a-1=6
Subtract 4 from 3 to get -1.
7a^{2}+12a-1-6=0
Subtract 6 from both sides.
7a^{2}+12a-7=0
Subtract 6 from -1 to get -7.
a=\frac{-12±\sqrt{12^{2}-4\times 7\left(-7\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 12 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-12±\sqrt{144-4\times 7\left(-7\right)}}{2\times 7}
Square 12.
a=\frac{-12±\sqrt{144-28\left(-7\right)}}{2\times 7}
Multiply -4 times 7.
a=\frac{-12±\sqrt{144+196}}{2\times 7}
Multiply -28 times -7.
a=\frac{-12±\sqrt{340}}{2\times 7}
Add 144 to 196.
a=\frac{-12±2\sqrt{85}}{2\times 7}
Take the square root of 340.
a=\frac{-12±2\sqrt{85}}{14}
Multiply 2 times 7.
a=\frac{2\sqrt{85}-12}{14}
Now solve the equation a=\frac{-12±2\sqrt{85}}{14} when ± is plus. Add -12 to 2\sqrt{85}.
a=\frac{\sqrt{85}-6}{7}
Divide -12+2\sqrt{85} by 14.
a=\frac{-2\sqrt{85}-12}{14}
Now solve the equation a=\frac{-12±2\sqrt{85}}{14} when ± is minus. Subtract 2\sqrt{85} from -12.
a=\frac{-\sqrt{85}-6}{7}
Divide -12-2\sqrt{85} by 14.
a=\frac{\sqrt{85}-6}{7} a=\frac{-\sqrt{85}-6}{7}
The equation is now solved.
a^{2}+12a+3+6a^{2}-4=6
Combine 5a and 7a to get 12a.
7a^{2}+12a+3-4=6
Combine a^{2} and 6a^{2} to get 7a^{2}.
7a^{2}+12a-1=6
Subtract 4 from 3 to get -1.
7a^{2}+12a=6+1
Add 1 to both sides.
7a^{2}+12a=7
Add 6 and 1 to get 7.
\frac{7a^{2}+12a}{7}=\frac{7}{7}
Divide both sides by 7.
a^{2}+\frac{12}{7}a=\frac{7}{7}
Dividing by 7 undoes the multiplication by 7.
a^{2}+\frac{12}{7}a=1
Divide 7 by 7.
a^{2}+\frac{12}{7}a+\left(\frac{6}{7}\right)^{2}=1+\left(\frac{6}{7}\right)^{2}
Divide \frac{12}{7}, the coefficient of the x term, by 2 to get \frac{6}{7}. Then add the square of \frac{6}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{12}{7}a+\frac{36}{49}=1+\frac{36}{49}
Square \frac{6}{7} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{12}{7}a+\frac{36}{49}=\frac{85}{49}
Add 1 to \frac{36}{49}.
\left(a+\frac{6}{7}\right)^{2}=\frac{85}{49}
Factor a^{2}+\frac{12}{7}a+\frac{36}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{6}{7}\right)^{2}}=\sqrt{\frac{85}{49}}
Take the square root of both sides of the equation.
a+\frac{6}{7}=\frac{\sqrt{85}}{7} a+\frac{6}{7}=-\frac{\sqrt{85}}{7}
Simplify.
a=\frac{\sqrt{85}-6}{7} a=\frac{-\sqrt{85}-6}{7}
Subtract \frac{6}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}