Solve for a
a=\frac{\sqrt{40010}}{100}-2\approx 0.000249984
a=-\frac{\sqrt{40010}}{100}-2\approx -4.000249984
Share
Copied to clipboard
a^{2}+4a=0.001
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a^{2}+4a-0.001=0.001-0.001
Subtract 0.001 from both sides of the equation.
a^{2}+4a-0.001=0
Subtracting 0.001 from itself leaves 0.
a=\frac{-4±\sqrt{4^{2}-4\left(-0.001\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -0.001 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-0.001\right)}}{2}
Square 4.
a=\frac{-4±\sqrt{16+0.004}}{2}
Multiply -4 times -0.001.
a=\frac{-4±\sqrt{16.004}}{2}
Add 16 to 0.004.
a=\frac{-4±\frac{\sqrt{40010}}{50}}{2}
Take the square root of 16.004.
a=\frac{\frac{\sqrt{40010}}{50}-4}{2}
Now solve the equation a=\frac{-4±\frac{\sqrt{40010}}{50}}{2} when ± is plus. Add -4 to \frac{\sqrt{40010}}{50}.
a=\frac{\sqrt{40010}}{100}-2
Divide -4+\frac{\sqrt{40010}}{50} by 2.
a=\frac{-\frac{\sqrt{40010}}{50}-4}{2}
Now solve the equation a=\frac{-4±\frac{\sqrt{40010}}{50}}{2} when ± is minus. Subtract \frac{\sqrt{40010}}{50} from -4.
a=-\frac{\sqrt{40010}}{100}-2
Divide -4-\frac{\sqrt{40010}}{50} by 2.
a=\frac{\sqrt{40010}}{100}-2 a=-\frac{\sqrt{40010}}{100}-2
The equation is now solved.
a^{2}+4a=0.001
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+4a+2^{2}=0.001+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+4a+4=0.001+4
Square 2.
a^{2}+4a+4=4.001
Add 0.001 to 4.
\left(a+2\right)^{2}=4.001
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{4.001}
Take the square root of both sides of the equation.
a+2=\frac{\sqrt{40010}}{100} a+2=-\frac{\sqrt{40010}}{100}
Simplify.
a=\frac{\sqrt{40010}}{100}-2 a=-\frac{\sqrt{40010}}{100}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}