Solve for a
a=4
a=-4
Share
Copied to clipboard
a^{2}+84=\left(2+\sqrt{80-a^{2}}\right)^{2}
Add 4 and 80 to get 84.
a^{2}+84=4+4\sqrt{80-a^{2}}+\left(\sqrt{80-a^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{80-a^{2}}\right)^{2}.
a^{2}+84=4+4\sqrt{80-a^{2}}+80-a^{2}
Calculate \sqrt{80-a^{2}} to the power of 2 and get 80-a^{2}.
a^{2}+84=84+4\sqrt{80-a^{2}}-a^{2}
Add 4 and 80 to get 84.
a^{2}+84-4\sqrt{80-a^{2}}=84-a^{2}
Subtract 4\sqrt{80-a^{2}} from both sides.
a^{2}+84-4\sqrt{80-a^{2}}+a^{2}=84
Add a^{2} to both sides.
2a^{2}+84-4\sqrt{80-a^{2}}=84
Combine a^{2} and a^{2} to get 2a^{2}.
-4\sqrt{80-a^{2}}=84-\left(2a^{2}+84\right)
Subtract 2a^{2}+84 from both sides of the equation.
-4\sqrt{80-a^{2}}=84-2a^{2}-84
To find the opposite of 2a^{2}+84, find the opposite of each term.
-4\sqrt{80-a^{2}}=-2a^{2}
Subtract 84 from 84 to get 0.
\left(-4\sqrt{80-a^{2}}\right)^{2}=\left(-2a^{2}\right)^{2}
Square both sides of the equation.
\left(-4\right)^{2}\left(\sqrt{80-a^{2}}\right)^{2}=\left(-2a^{2}\right)^{2}
Expand \left(-4\sqrt{80-a^{2}}\right)^{2}.
16\left(\sqrt{80-a^{2}}\right)^{2}=\left(-2a^{2}\right)^{2}
Calculate -4 to the power of 2 and get 16.
16\left(80-a^{2}\right)=\left(-2a^{2}\right)^{2}
Calculate \sqrt{80-a^{2}} to the power of 2 and get 80-a^{2}.
1280-16a^{2}=\left(-2a^{2}\right)^{2}
Use the distributive property to multiply 16 by 80-a^{2}.
1280-16a^{2}=\left(-2\right)^{2}\left(a^{2}\right)^{2}
Expand \left(-2a^{2}\right)^{2}.
1280-16a^{2}=\left(-2\right)^{2}a^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1280-16a^{2}=4a^{4}
Calculate -2 to the power of 2 and get 4.
1280-16a^{2}-4a^{4}=0
Subtract 4a^{4} from both sides.
-4t^{2}-16t+1280=0
Substitute t for a^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-4\right)\times 1280}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, -16 for b, and 1280 for c in the quadratic formula.
t=\frac{16±144}{-8}
Do the calculations.
t=-20 t=16
Solve the equation t=\frac{16±144}{-8} when ± is plus and when ± is minus.
a=4 a=-4
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for positive t.
4^{2}+4+80=\left(2+\sqrt{80-4^{2}}\right)^{2}
Substitute 4 for a in the equation a^{2}+4+80=\left(2+\sqrt{80-a^{2}}\right)^{2}.
100=100
Simplify. The value a=4 satisfies the equation.
\left(-4\right)^{2}+4+80=\left(2+\sqrt{80-\left(-4\right)^{2}}\right)^{2}
Substitute -4 for a in the equation a^{2}+4+80=\left(2+\sqrt{80-a^{2}}\right)^{2}.
100=100
Simplify. The value a=-4 satisfies the equation.
a=4 a=-4
List all solutions of -4\sqrt{80-a^{2}}=-2a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}