Solve for a
a = \frac{9}{4} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
a^{2}+34=a^{2}+8a+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+4\right)^{2}.
a^{2}+34-a^{2}=8a+16
Subtract a^{2} from both sides.
34=8a+16
Combine a^{2} and -a^{2} to get 0.
8a+16=34
Swap sides so that all variable terms are on the left hand side.
8a=34-16
Subtract 16 from both sides.
8a=18
Subtract 16 from 34 to get 18.
a=\frac{18}{8}
Divide both sides by 8.
a=\frac{9}{4}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}