Solve for a
a = -\frac{446645}{142} = -3145\frac{55}{142} \approx -3145.387323944
a=0
Share
Copied to clipboard
142a^{2}+446732a=87a
Multiply both sides of the equation by 142.
142a^{2}+446732a-87a=0
Subtract 87a from both sides.
142a^{2}+446645a=0
Combine 446732a and -87a to get 446645a.
a\left(142a+446645\right)=0
Factor out a.
a=0 a=-\frac{446645}{142}
To find equation solutions, solve a=0 and 142a+446645=0.
142a^{2}+446732a=87a
Multiply both sides of the equation by 142.
142a^{2}+446732a-87a=0
Subtract 87a from both sides.
142a^{2}+446645a=0
Combine 446732a and -87a to get 446645a.
a=\frac{-446645±\sqrt{446645^{2}}}{2\times 142}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 142 for a, 446645 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-446645±446645}{2\times 142}
Take the square root of 446645^{2}.
a=\frac{-446645±446645}{284}
Multiply 2 times 142.
a=\frac{0}{284}
Now solve the equation a=\frac{-446645±446645}{284} when ± is plus. Add -446645 to 446645.
a=0
Divide 0 by 284.
a=-\frac{893290}{284}
Now solve the equation a=\frac{-446645±446645}{284} when ± is minus. Subtract 446645 from -446645.
a=-\frac{446645}{142}
Reduce the fraction \frac{-893290}{284} to lowest terms by extracting and canceling out 2.
a=0 a=-\frac{446645}{142}
The equation is now solved.
142a^{2}+446732a=87a
Multiply both sides of the equation by 142.
142a^{2}+446732a-87a=0
Subtract 87a from both sides.
142a^{2}+446645a=0
Combine 446732a and -87a to get 446645a.
\frac{142a^{2}+446645a}{142}=\frac{0}{142}
Divide both sides by 142.
a^{2}+\frac{446645}{142}a=\frac{0}{142}
Dividing by 142 undoes the multiplication by 142.
a^{2}+\frac{446645}{142}a=0
Divide 0 by 142.
a^{2}+\frac{446645}{142}a+\left(\frac{446645}{284}\right)^{2}=\left(\frac{446645}{284}\right)^{2}
Divide \frac{446645}{142}, the coefficient of the x term, by 2 to get \frac{446645}{284}. Then add the square of \frac{446645}{284} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{446645}{142}a+\frac{199491756025}{80656}=\frac{199491756025}{80656}
Square \frac{446645}{284} by squaring both the numerator and the denominator of the fraction.
\left(a+\frac{446645}{284}\right)^{2}=\frac{199491756025}{80656}
Factor a^{2}+\frac{446645}{142}a+\frac{199491756025}{80656}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{446645}{284}\right)^{2}}=\sqrt{\frac{199491756025}{80656}}
Take the square root of both sides of the equation.
a+\frac{446645}{284}=\frac{446645}{284} a+\frac{446645}{284}=-\frac{446645}{284}
Simplify.
a=0 a=-\frac{446645}{142}
Subtract \frac{446645}{284} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}