Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{a^{2}+3c^{2}-36}{5c}\text{, }&c\neq 0\\b\in \mathrm{C}\text{, }&\left(a=6\text{ or }a=-6\right)\text{ and }c=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{a^{2}+3c^{2}-36}{5c}\text{, }&c\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }|a|=6\end{matrix}\right.
Solve for a (complex solution)
a=-\sqrt{36-3c^{2}-5bc}
a=\sqrt{36-3c^{2}-5bc}
Solve for a
a=\sqrt{36-3c^{2}-5bc}
a=-\sqrt{36-3c^{2}-5bc}\text{, }c\geq \frac{-\sqrt{25b^{2}+432}-5b}{6}\text{ and }c\leq \frac{\sqrt{25b^{2}+432}-5b}{6}
Share
Copied to clipboard
3c^{2}+5bc=36-a^{2}
Subtract a^{2} from both sides.
5bc=36-a^{2}-3c^{2}
Subtract 3c^{2} from both sides.
5cb=36-3c^{2}-a^{2}
The equation is in standard form.
\frac{5cb}{5c}=\frac{36-3c^{2}-a^{2}}{5c}
Divide both sides by 5c.
b=\frac{36-3c^{2}-a^{2}}{5c}
Dividing by 5c undoes the multiplication by 5c.
3c^{2}+5bc=36-a^{2}
Subtract a^{2} from both sides.
5bc=36-a^{2}-3c^{2}
Subtract 3c^{2} from both sides.
5cb=36-3c^{2}-a^{2}
The equation is in standard form.
\frac{5cb}{5c}=\frac{36-3c^{2}-a^{2}}{5c}
Divide both sides by 5c.
b=\frac{36-3c^{2}-a^{2}}{5c}
Dividing by 5c undoes the multiplication by 5c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}