Solve for c_2 (complex solution)
\left\{\begin{matrix}c_{2}=-\frac{a^{2}+2a+3}{z}\text{, }&z\neq 0\\c_{2}\in \mathrm{C}\text{, }&\left(a=-\sqrt{2}i-1\text{ or }a=-1+\sqrt{2}i\right)\text{ and }z=0\end{matrix}\right.
Solve for c_2
c_{2}=-\frac{a^{2}+2a+3}{z}
z\neq 0
Solve for a (complex solution)
a=\sqrt{-c_{2}z-2}-1
a=-\sqrt{-c_{2}z-2}-1
Solve for a
a=\sqrt{-c_{2}z-2}-1
a=-\sqrt{-c_{2}z-2}-1\text{, }\left(z>0\text{ or }c_{2}\geq -\frac{2}{z}\right)\text{ and }\left(z<0\text{ or }c_{2}\leq -\frac{2}{z}\right)\text{ and }z\neq 0
Share
Copied to clipboard
2a+c_{2}z=-3-a^{2}
Subtract a^{2} from both sides.
c_{2}z=-3-a^{2}-2a
Subtract 2a from both sides.
zc_{2}=-a^{2}-2a-3
The equation is in standard form.
\frac{zc_{2}}{z}=\frac{-a^{2}-2a-3}{z}
Divide both sides by z.
c_{2}=\frac{-a^{2}-2a-3}{z}
Dividing by z undoes the multiplication by z.
c_{2}=-\frac{a^{2}+2a+3}{z}
Divide -3-a^{2}-2a by z.
2a+c_{2}z=-3-a^{2}
Subtract a^{2} from both sides.
c_{2}z=-3-a^{2}-2a
Subtract 2a from both sides.
zc_{2}=-a^{2}-2a-3
The equation is in standard form.
\frac{zc_{2}}{z}=\frac{-a^{2}-2a-3}{z}
Divide both sides by z.
c_{2}=\frac{-a^{2}-2a-3}{z}
Dividing by z undoes the multiplication by z.
c_{2}=-\frac{a^{2}+2a+3}{z}
Divide -3-a^{2}-2a by z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}