Solve for a
a=\frac{1+i\sqrt{31-16\sqrt{3}}}{4}\approx 0.25+0.453265036i
a=\frac{-i\sqrt{31-16\sqrt{3}}+1}{4}\approx 0.25-0.453265036i
Share
Copied to clipboard
2a^{2}+4-a=2\sqrt{3}
Multiply both sides of the equation by 2.
2a^{2}+4-a-2\sqrt{3}=0
Subtract 2\sqrt{3} from both sides.
2a^{2}-a+4-2\sqrt{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(4-2\sqrt{3}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and 4-2\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1-8\left(4-2\sqrt{3}\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-1\right)±\sqrt{1+16\sqrt{3}-32}}{2\times 2}
Multiply -8 times 4-2\sqrt{3}.
a=\frac{-\left(-1\right)±\sqrt{16\sqrt{3}-31}}{2\times 2}
Add 1 to -32+16\sqrt{3}.
a=\frac{-\left(-1\right)±i\sqrt{31-16\sqrt{3}}}{2\times 2}
Take the square root of -31+16\sqrt{3}.
a=\frac{1±i\sqrt{31-16\sqrt{3}}}{2\times 2}
The opposite of -1 is 1.
a=\frac{1±i\sqrt{31-16\sqrt{3}}}{4}
Multiply 2 times 2.
a=\frac{1+i\sqrt{31-16\sqrt{3}}}{4}
Now solve the equation a=\frac{1±i\sqrt{31-16\sqrt{3}}}{4} when ± is plus. Add 1 to i\sqrt{31-16\sqrt{3}}.
a=\frac{-i\sqrt{31-16\sqrt{3}}+1}{4}
Now solve the equation a=\frac{1±i\sqrt{31-16\sqrt{3}}}{4} when ± is minus. Subtract i\sqrt{31-16\sqrt{3}} from 1.
a=\frac{1+i\sqrt{31-16\sqrt{3}}}{4} a=\frac{-i\sqrt{31-16\sqrt{3}}+1}{4}
The equation is now solved.
2a^{2}+4-a=2\sqrt{3}
Multiply both sides of the equation by 2.
2a^{2}-a=2\sqrt{3}-4
Subtract 4 from both sides.
\frac{2a^{2}-a}{2}=\frac{2\sqrt{3}-4}{2}
Divide both sides by 2.
a^{2}-\frac{1}{2}a=\frac{2\sqrt{3}-4}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-\frac{1}{2}a=\sqrt{3}-2
Divide 2\sqrt{3}-4 by 2.
a^{2}-\frac{1}{2}a+\left(-\frac{1}{4}\right)^{2}=\sqrt{3}-2+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\sqrt{3}-2+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\sqrt{3}-\frac{31}{16}
Add \sqrt{3}-2 to \frac{1}{16}.
\left(a-\frac{1}{4}\right)^{2}=\sqrt{3}-\frac{31}{16}
Factor a^{2}-\frac{1}{2}a+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{4}\right)^{2}}=\sqrt{\sqrt{3}-\frac{31}{16}}
Take the square root of both sides of the equation.
a-\frac{1}{4}=\frac{i\sqrt{31-16\sqrt{3}}}{4} a-\frac{1}{4}=-\frac{i\sqrt{31-16\sqrt{3}}}{4}
Simplify.
a=\frac{1+i\sqrt{31-16\sqrt{3}}}{4} a=\frac{-i\sqrt{31-16\sqrt{3}}+1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}