Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+2\sqrt{3}a+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-2\sqrt{3}±\sqrt{\left(2\sqrt{3}\right)^{2}-4\times 60}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2\sqrt{3} for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2\sqrt{3}±\sqrt{12-4\times 60}}{2}
Square 2\sqrt{3}.
a=\frac{-2\sqrt{3}±\sqrt{12-240}}{2}
Multiply -4 times 60.
a=\frac{-2\sqrt{3}±\sqrt{-228}}{2}
Add 12 to -240.
a=\frac{-2\sqrt{3}±2\sqrt{57}i}{2}
Take the square root of -228.
a=\frac{-2\sqrt{3}+2\sqrt{57}i}{2}
Now solve the equation a=\frac{-2\sqrt{3}±2\sqrt{57}i}{2} when ± is plus. Add -2\sqrt{3} to 2i\sqrt{57}.
a=-\sqrt{3}+\sqrt{57}i
Divide -2\sqrt{3}+2i\sqrt{57} by 2.
a=\frac{-2\sqrt{57}i-2\sqrt{3}}{2}
Now solve the equation a=\frac{-2\sqrt{3}±2\sqrt{57}i}{2} when ± is minus. Subtract 2i\sqrt{57} from -2\sqrt{3}.
a=-\sqrt{57}i-\sqrt{3}
Divide -2\sqrt{3}-2i\sqrt{57} by 2.
a=-\sqrt{3}+\sqrt{57}i a=-\sqrt{57}i-\sqrt{3}
The equation is now solved.
a^{2}+2\sqrt{3}a+60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+2\sqrt{3}a+60-60=-60
Subtract 60 from both sides of the equation.
a^{2}+2\sqrt{3}a=-60
Subtracting 60 from itself leaves 0.
a^{2}+2\sqrt{3}a+\left(\sqrt{3}\right)^{2}=-60+\left(\sqrt{3}\right)^{2}
Divide 2\sqrt{3}, the coefficient of the x term, by 2 to get \sqrt{3}. Then add the square of \sqrt{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+2\sqrt{3}a+3=-60+3
Square \sqrt{3}.
a^{2}+2\sqrt{3}a+3=-57
Add -60 to 3.
\left(a+\sqrt{3}\right)^{2}=-57
Factor a^{2}+2\sqrt{3}a+3. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\sqrt{3}\right)^{2}}=\sqrt{-57}
Take the square root of both sides of the equation.
a+\sqrt{3}=\sqrt{57}i a+\sqrt{3}=-\sqrt{57}i
Simplify.
a=-\sqrt{3}+\sqrt{57}i a=-\sqrt{57}i-\sqrt{3}
Subtract \sqrt{3} from both sides of the equation.