Solve for a
a=3\sqrt{10}-12\approx -2.513167019
a=-3\sqrt{10}-12\approx -21.486832981
Share
Copied to clipboard
a^{2}+a^{2}+48a+576=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+24\right)^{2}.
2a^{2}+48a+576=468
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+48a+576-468=0
Subtract 468 from both sides.
2a^{2}+48a+108=0
Subtract 468 from 576 to get 108.
a=\frac{-48±\sqrt{48^{2}-4\times 2\times 108}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 48 for b, and 108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-48±\sqrt{2304-4\times 2\times 108}}{2\times 2}
Square 48.
a=\frac{-48±\sqrt{2304-8\times 108}}{2\times 2}
Multiply -4 times 2.
a=\frac{-48±\sqrt{2304-864}}{2\times 2}
Multiply -8 times 108.
a=\frac{-48±\sqrt{1440}}{2\times 2}
Add 2304 to -864.
a=\frac{-48±12\sqrt{10}}{2\times 2}
Take the square root of 1440.
a=\frac{-48±12\sqrt{10}}{4}
Multiply 2 times 2.
a=\frac{12\sqrt{10}-48}{4}
Now solve the equation a=\frac{-48±12\sqrt{10}}{4} when ± is plus. Add -48 to 12\sqrt{10}.
a=3\sqrt{10}-12
Divide -48+12\sqrt{10} by 4.
a=\frac{-12\sqrt{10}-48}{4}
Now solve the equation a=\frac{-48±12\sqrt{10}}{4} when ± is minus. Subtract 12\sqrt{10} from -48.
a=-3\sqrt{10}-12
Divide -48-12\sqrt{10} by 4.
a=3\sqrt{10}-12 a=-3\sqrt{10}-12
The equation is now solved.
a^{2}+a^{2}+48a+576=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+24\right)^{2}.
2a^{2}+48a+576=468
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+48a=468-576
Subtract 576 from both sides.
2a^{2}+48a=-108
Subtract 576 from 468 to get -108.
\frac{2a^{2}+48a}{2}=-\frac{108}{2}
Divide both sides by 2.
a^{2}+\frac{48}{2}a=-\frac{108}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}+24a=-\frac{108}{2}
Divide 48 by 2.
a^{2}+24a=-54
Divide -108 by 2.
a^{2}+24a+12^{2}=-54+12^{2}
Divide 24, the coefficient of the x term, by 2 to get 12. Then add the square of 12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+24a+144=-54+144
Square 12.
a^{2}+24a+144=90
Add -54 to 144.
\left(a+12\right)^{2}=90
Factor a^{2}+24a+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+12\right)^{2}}=\sqrt{90}
Take the square root of both sides of the equation.
a+12=3\sqrt{10} a+12=-3\sqrt{10}
Simplify.
a=3\sqrt{10}-12 a=-3\sqrt{10}-12
Subtract 12 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}