Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+a^{2}+48a+576=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+24\right)^{2}.
2a^{2}+48a+576=468
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+48a+576-468=0
Subtract 468 from both sides.
2a^{2}+48a+108=0
Subtract 468 from 576 to get 108.
a=\frac{-48±\sqrt{48^{2}-4\times 2\times 108}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 48 for b, and 108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-48±\sqrt{2304-4\times 2\times 108}}{2\times 2}
Square 48.
a=\frac{-48±\sqrt{2304-8\times 108}}{2\times 2}
Multiply -4 times 2.
a=\frac{-48±\sqrt{2304-864}}{2\times 2}
Multiply -8 times 108.
a=\frac{-48±\sqrt{1440}}{2\times 2}
Add 2304 to -864.
a=\frac{-48±12\sqrt{10}}{2\times 2}
Take the square root of 1440.
a=\frac{-48±12\sqrt{10}}{4}
Multiply 2 times 2.
a=\frac{12\sqrt{10}-48}{4}
Now solve the equation a=\frac{-48±12\sqrt{10}}{4} when ± is plus. Add -48 to 12\sqrt{10}.
a=3\sqrt{10}-12
Divide -48+12\sqrt{10} by 4.
a=\frac{-12\sqrt{10}-48}{4}
Now solve the equation a=\frac{-48±12\sqrt{10}}{4} when ± is minus. Subtract 12\sqrt{10} from -48.
a=-3\sqrt{10}-12
Divide -48-12\sqrt{10} by 4.
a=3\sqrt{10}-12 a=-3\sqrt{10}-12
The equation is now solved.
a^{2}+a^{2}+48a+576=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+24\right)^{2}.
2a^{2}+48a+576=468
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+48a=468-576
Subtract 576 from both sides.
2a^{2}+48a=-108
Subtract 576 from 468 to get -108.
\frac{2a^{2}+48a}{2}=-\frac{108}{2}
Divide both sides by 2.
a^{2}+\frac{48}{2}a=-\frac{108}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}+24a=-\frac{108}{2}
Divide 48 by 2.
a^{2}+24a=-54
Divide -108 by 2.
a^{2}+24a+12^{2}=-54+12^{2}
Divide 24, the coefficient of the x term, by 2 to get 12. Then add the square of 12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+24a+144=-54+144
Square 12.
a^{2}+24a+144=90
Add -54 to 144.
\left(a+12\right)^{2}=90
Factor a^{2}+24a+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+12\right)^{2}}=\sqrt{90}
Take the square root of both sides of the equation.
a+12=3\sqrt{10} a+12=-3\sqrt{10}
Simplify.
a=3\sqrt{10}-12 a=-3\sqrt{10}-12
Subtract 12 from both sides of the equation.