Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+16a^{2}+80a+100=\frac{64}{25}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4a+10\right)^{2}.
17a^{2}+80a+100=\frac{64}{25}
Combine a^{2} and 16a^{2} to get 17a^{2}.
17a^{2}+80a+100-\frac{64}{25}=0
Subtract \frac{64}{25} from both sides.
17a^{2}+80a+\frac{2436}{25}=0
Subtract \frac{64}{25} from 100 to get \frac{2436}{25}.
a=\frac{-80±\sqrt{80^{2}-4\times 17\times \frac{2436}{25}}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, 80 for b, and \frac{2436}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-80±\sqrt{6400-4\times 17\times \frac{2436}{25}}}{2\times 17}
Square 80.
a=\frac{-80±\sqrt{6400-68\times \frac{2436}{25}}}{2\times 17}
Multiply -4 times 17.
a=\frac{-80±\sqrt{6400-\frac{165648}{25}}}{2\times 17}
Multiply -68 times \frac{2436}{25}.
a=\frac{-80±\sqrt{-\frac{5648}{25}}}{2\times 17}
Add 6400 to -\frac{165648}{25}.
a=\frac{-80±\frac{4\sqrt{353}i}{5}}{2\times 17}
Take the square root of -\frac{5648}{25}.
a=\frac{-80±\frac{4\sqrt{353}i}{5}}{34}
Multiply 2 times 17.
a=\frac{\frac{4\sqrt{353}i}{5}-80}{34}
Now solve the equation a=\frac{-80±\frac{4\sqrt{353}i}{5}}{34} when ± is plus. Add -80 to \frac{4i\sqrt{353}}{5}.
a=\frac{2\sqrt{353}i}{85}-\frac{40}{17}
Divide -80+\frac{4i\sqrt{353}}{5} by 34.
a=\frac{-\frac{4\sqrt{353}i}{5}-80}{34}
Now solve the equation a=\frac{-80±\frac{4\sqrt{353}i}{5}}{34} when ± is minus. Subtract \frac{4i\sqrt{353}}{5} from -80.
a=-\frac{2\sqrt{353}i}{85}-\frac{40}{17}
Divide -80-\frac{4i\sqrt{353}}{5} by 34.
a=\frac{2\sqrt{353}i}{85}-\frac{40}{17} a=-\frac{2\sqrt{353}i}{85}-\frac{40}{17}
The equation is now solved.
a^{2}+16a^{2}+80a+100=\frac{64}{25}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4a+10\right)^{2}.
17a^{2}+80a+100=\frac{64}{25}
Combine a^{2} and 16a^{2} to get 17a^{2}.
17a^{2}+80a=\frac{64}{25}-100
Subtract 100 from both sides.
17a^{2}+80a=-\frac{2436}{25}
Subtract 100 from \frac{64}{25} to get -\frac{2436}{25}.
\frac{17a^{2}+80a}{17}=-\frac{\frac{2436}{25}}{17}
Divide both sides by 17.
a^{2}+\frac{80}{17}a=-\frac{\frac{2436}{25}}{17}
Dividing by 17 undoes the multiplication by 17.
a^{2}+\frac{80}{17}a=-\frac{2436}{425}
Divide -\frac{2436}{25} by 17.
a^{2}+\frac{80}{17}a+\left(\frac{40}{17}\right)^{2}=-\frac{2436}{425}+\left(\frac{40}{17}\right)^{2}
Divide \frac{80}{17}, the coefficient of the x term, by 2 to get \frac{40}{17}. Then add the square of \frac{40}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{80}{17}a+\frac{1600}{289}=-\frac{2436}{425}+\frac{1600}{289}
Square \frac{40}{17} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{80}{17}a+\frac{1600}{289}=-\frac{1412}{7225}
Add -\frac{2436}{425} to \frac{1600}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{40}{17}\right)^{2}=-\frac{1412}{7225}
Factor a^{2}+\frac{80}{17}a+\frac{1600}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{40}{17}\right)^{2}}=\sqrt{-\frac{1412}{7225}}
Take the square root of both sides of the equation.
a+\frac{40}{17}=\frac{2\sqrt{353}i}{85} a+\frac{40}{17}=-\frac{2\sqrt{353}i}{85}
Simplify.
a=\frac{2\sqrt{353}i}{85}-\frac{40}{17} a=-\frac{2\sqrt{353}i}{85}-\frac{40}{17}
Subtract \frac{40}{17} from both sides of the equation.