Factor
\frac{\left(4\sqrt{3}+11\right)a^{2}}{2}
Evaluate
\frac{\left(4\sqrt{3}+11\right)a^{2}}{2}
Share
Copied to clipboard
factor(\frac{3}{2}a^{2}+\frac{2a^{2}}{2-\sqrt{3}})
Combine a^{2} and \frac{a^{2}}{2} to get \frac{3}{2}a^{2}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)})
Rationalize the denominator of \frac{2a^{2}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}})
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{4-3})
Square 2. Square \sqrt{3}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{1})
Subtract 3 from 4 to get 1.
factor(\frac{3}{2}a^{2}+2a^{2}\left(2+\sqrt{3}\right))
Anything divided by one gives itself.
factor(\frac{3}{2}a^{2}+4a^{2}+2a^{2}\sqrt{3})
Use the distributive property to multiply 2a^{2} by 2+\sqrt{3}.
factor(\frac{11}{2}a^{2}+2a^{2}\sqrt{3})
Combine \frac{3}{2}a^{2} and 4a^{2} to get \frac{11}{2}a^{2}.
\frac{11a^{2}+4a^{2}\sqrt{3}}{2}
Factor out \frac{1}{2}.
a^{2}\left(11+4\sqrt{3}\right)
Consider 11a^{2}+4a^{2}\sqrt{3}. Factor out a^{2}.
\frac{a^{2}\left(11+4\sqrt{3}\right)}{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}