Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(\frac{3}{2}a^{2}+\frac{2a^{2}}{2-\sqrt{3}})
Combine a^{2} and \frac{a^{2}}{2} to get \frac{3}{2}a^{2}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)})
Rationalize the denominator of \frac{2a^{2}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}})
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{4-3})
Square 2. Square \sqrt{3}.
factor(\frac{3}{2}a^{2}+\frac{2a^{2}\left(2+\sqrt{3}\right)}{1})
Subtract 3 from 4 to get 1.
factor(\frac{3}{2}a^{2}+2a^{2}\left(2+\sqrt{3}\right))
Anything divided by one gives itself.
factor(\frac{3}{2}a^{2}+4a^{2}+2a^{2}\sqrt{3})
Use the distributive property to multiply 2a^{2} by 2+\sqrt{3}.
factor(\frac{11}{2}a^{2}+2a^{2}\sqrt{3})
Combine \frac{3}{2}a^{2} and 4a^{2} to get \frac{11}{2}a^{2}.
\frac{11a^{2}+4a^{2}\sqrt{3}}{2}
Factor out \frac{1}{2}.
a^{2}\left(11+4\sqrt{3}\right)
Consider 11a^{2}+4a^{2}\sqrt{3}. Factor out a^{2}.
\frac{a^{2}\left(11+4\sqrt{3}\right)}{2}
Rewrite the complete factored expression.